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Measurement and estimation of parameters are essential for science and engineering, where the main
quest is to find the highest achievable precision with the given resources and design schemes to attain it.
Two schemes, the sequential feedback scheme and the parallel scheme, are usually studied in the quantum
parameter estimation. While the sequential feedback scheme represents the most general scheme, it remains
unknown whether it can outperform the parallel scheme for any quantum estimation tasks. In this Letter, we
show that the sequential feedback scheme has a threefold improvement over the parallel scheme for
Hamiltonian parameter estimations on two-dimensional systems, and an order of O(d + 1) improvement
for Hamiltonian parameter estimation on d-dimensional systems. We also show that, contrary to the
conventional belief, it is possible to simultaneously achieve the highest precision for estimating all three
components of a magnetic field, which sets a benchmark on the local precision limit for the estimation of a

magnetic field.
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A pivotal task in science and technology is to find out the
highest achievable precision in measuring and estimating
parameters of interest with given resources and design
schemes to reach that precision [1-20]. Typically, to estimate
some parameters x = (xy,X,,...,X,) encoded in some
dynamics ¢,, a probe state p, is prepared which evolves

under the dynamics p,, (L p.. By performing positive operator
valued measurements { E, } on the output state p,, one gets the
measurement result y with a probability p(y|x) = Tr(E,p,).
According to the Cramér-Rao bound the covariance matrix of
any unbiased estimator of x is then bounded below by the
Fisher information matrix nCov (&) > I~!(x) [21-24], where
n is the number of times that the procedure is repeated,
Cov(%) denotes the covariance matrix of the estimator,
and /(x) is the Fisher information matrix, with the i jth entry
given by I;;(x)= [ p(yx){[0Inp(y|x)/(0x;)][0np(y|x)/
(Ox;)]}dy [25]. The Fisher information matrix can be further
bounded by the quantum Fisher information matrix (QFIM)
J(p,), which gives the quantum Cramér-Rao bound
[21,22,26,27] nCov(%) > 17" (x) >J " (py).

In the multiparameter estimation, the quantum Cramér-
Rao bound is usually not achievable even asymptotically
[21,22,28-37]. Two tradeoffs have to be considered
in multiparameter estimation: the first tradeoff is on the
choice of measurements, as the optimal measurements for
different parameters are usually incompatible [38]; the
second tradeoff is on the choice of the probe states, since
the optimal probe states for different parameters are also
usually different. These tradeoffs are usually dealt with by
specifying a particular figure of merit taken as Tr[Cov(X)G]
with G > 0, then optimizing the measurements and the
probe states based on the figure of merit.
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Besides the measurements and the probe states, one
also needs to optimize the schemes that arrange multiple
uses of the dynamics. Two schemes, the sequential feed-
back scheme and the parallel scheme, as shown in Fig. 1,
are usually studied. The sequential feedback scheme
represents the most general scheme, which includes the
parallel scheme as a special case when taking the controls
as SWAP gates. Examples have been found in quantum
channel discrimination that the sequential feedback
scheme can outperform the parallel scheme for the
discrimination of two quantum channels [39,40]. In the
quantum parameter estimation, it remains unknown
whether the sequential feedback scheme can outperform
the parallel scheme. Based on some upper bounds on the
precision limit [5,10], it has been shown that the sequen-
tial feedback scheme does not lead to higher precision in
the single-parameter quantum estimation under several
dynamics, including the unitary [3] and dephasing dynam-
ics [7-10]. This has led to a conjecture that in the
asymptotical limit, the sequential feedback scheme pro-
vides no gains over the parallel scheme for quantum
parameter estimation [10].

(a) (b)

FIG. 1. (a) Sequential feedback scheme. (b) Parallel scheme.
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In this Letter, we show that the sequential feedback
scheme outperforms the parallel scheme for Hamiltonian
parameter estimation; here, we focus on the estimations of
small shifts of the parameters around some known values.
We first study the estimation of the Hamiltonian for SU(2)
dynamics, which is a fundamental problem in quantum
parameter estimation [37,41-53] and closely related to
the estimation of a magnetic field. It thus has many
applications in quantum sensing, data storage, information
processing, and magnetic resonance, and it also has
implications in quantum gyroscope, quantum reference
frame alignments, etc. [41,43-46,54]. By optimizing the
general sequential feedback scheme, we obtain the ultimate
local precision limit for the estimation of a magnetic field
which shows that the sequential feedback scheme outper-
forms the parallel scheme with a threefold improvement.
We also show that the optimal sequential feedback scheme
achieves the highest precision for all three parameters
of a magnetic field simultaneously, this is contrary to the
conventional belief that some tradeoffs have to be made
for the estimation of different parameters of a magnetic
field. We further show that for the estimation of general
Hamiltonian on d-dimensional systems the sequential
feedback scheme outperforms the parallel scheme with
an order of O(d + 1). This sheds light on the comparison
between the two schemes. We note that the sequential
feedback scheme is also more implementable under many
current experimental settings since high-fidelity controls on
small systems can now be routinely done, while accurately
preparing entangled states with many particles for the
parallel scheme is still very challenging.

For the estimation of a two-dimensional Hamiltonian, we
consider the Hamiltonian for a spin-1/2 in a magnetic field,
which can be written as H(B,0,¢) = B(sin 6 cos ¢o,+
sin @ sin ¢, + cos Oo3); here, x = (B, 0, ¢) represents the
magnitude and the directions of a magnetic field, and
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are Pauli matrices. The Hamiltonian can also be written
concisely as H(B, 0, ¢) = B[n(0, ¢) - 6], where n(0, ¢) =
(sin@cos ¢, sinfsin ¢, cos ). We are interested in the
ultimate local precision limit in estimating x = (B, 0, ¢),
with the aid of ancillary systems. We first consider the

scheme without feedback controls, then extend to the
general sequential feedback scheme.

and

We denote U(x,T) = e HBIAT a5 the free evolu-
tion of the Hamiltonian with 7 wunits of time and
Uus(x,T) =U(x,T) ® I, as the evolution with an ancil-
lary system with 7, as the identity operator on the ancillary
system. Let p,=Us(x,T)psa UI‘(x, T) and p g4 =
Ua(x+dx, T)psuUy(x + dx, T); here, pgy denotes the
initial state of system + ancilla and dx represents a small
shift of the parameter. The local precision limit of estimat-
ing x from the output state p, is related to the Bures
distance between p, and p, 4, as [21,22,26,27]

1
d%ures(px’px—&-dx) = szi/(px)dxidxj; (1)
ij

here, the Bures distance dg, is defined as dgyes (01, 22) =

. 1/2 1/2
V2 =2F(py.py), with F(pi.ps) =1\/p\’pap/* as the

fidelity between p; and p,, and J;;(p,) is the ijth entry
of the QFIM J(p,). Since

n/};XdzBures(pwprrdx) ZZ_Z%PF(pSA’ U/®IA,0SA U/T ®IA)’
(2)

where U’ =U'(x,T)U(x +dx,T), the maximal
QFIM is thus related to the minimum fidelity
min,  F(psa, U' ® I1psaU’" @ 1).

For any dxd unitary U, we denote ¢ as the eigen-
values of U with Eye(—ﬂ,ﬂ], 1 <j<d Wecall E}’ the
eigenangles of U and assume EY, =EV >EY>...>
EY = EU. are arranged in decreasing order. It is known
that min, F(pg, UpoU") = cos[(ESa — EY)/2) if Dy —
EY. < z[61].Denote C(U)=(EYx—EY. )/2,and then the
equation can be written concisely as min, F(pg.UpoU") =
cosC(U). Since Ema* = EY,, and EZ2" = EU.__ we also
have min, F(pss. U ® I4ps2U" ® 1) = cos C(U). (We
note that this does not mean the ancillary system is not
useful; the role of the ancillary system will be clear later.)

With Egs. (1) and (2), we can then obtain

ng!ﬁxdxidxj =8{1—cosC[U"(x,T)U(x+dx,T)]}. (3)

ij

If U(x, T) is continuous with x, then when dx is sufficiently
small, U (x,T)U(x+dx,T)—1, C[U"(x,T)U(x+dx,T)| >
0; thus, up to the second order

> Jmdxidx; = 4C? (U (x, T)U(x + dx, T)].  (4)
ij

To ensure there exists a QFIM J(p,) that achieves the J™**
for all dx, we need to show that the optimal state pg, that
achieves the maximum Bures distance in Eq. (2) is
independent of dx. In the Supplemental Material [55],
we showed that any maximally entangled state [which are
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those states such that the reduced state is completely mixed,
i.e., Try(psa) = 1/2I] achieves the maximum Bures dis-
tance in Eq. (2) for all dx; J™* thus corresponds to
the QFIM of any maximally entangled probe state. And
the maximal QFIM J™** can be obtained by comparing the
coeffcients at both sides of Eq. (4), which is given by (see
the Supplemental Material [55])

T? 0 0
Jnx =40 sin?(BT) 0 . (5)
0 0 sin?(BT)sin?(6)

Furthermore, the projective measurement in the Bell
basis saturates the quantum Cramér-Rao bound. In the
Supplemental Material [55], we showed that the
distribution of the measurement results in the Bell basis
is given by p; = cos*(BT), p, = sin’(BT)cos* 6, p; =
sin?(BT) sin?> @cos® ¢, and p, = sin®(BT) sin’ @ sin’ ¢,
which has the classical Fisher information matrix equal
to J™. The quantum Cramér-Rao bound is thus saturable,
and J™* sets the local precision limit when the dynamics is
evolved for T units of time. This is consistent with previous
studies [47,49]; however, our method makes it easy to
incorporate feedback controls, as we now show.

For the general sequential feedback scheme as in
Fig. 1(a), the total evolution can be written as U, (x, Nt) =
UNUA(x 1) UsUys(x, 1)U Uy(x,1), where Uy(x,t) =

_IH ®IA with t:(T/N), and Ul’UZ?""UN
denote the feedback controls. It can be shown that
ClUL,(x,Nt)U gy (x+dx,Nt)] NC[U’; (x,1) UA(x+dx z)]
where the equality can be achieved when U, = U, = --- =
Uy = U, 4(x,1) (see the Supplemental Material [55])
In practice, the true value x is not known a priori,
the estimated value % need to be used, and the controls
Uy =U,="---=Uy = U,(&, 1) need to be updated adap-
tively. This, however, does not affect the asymptotical
scaling [62—-64].

From Eq. (4), we then have

ST,y = AUy (5, N ax + i, N1)]
ij
<AN2C (U} (x, 1)U (x + dx, 1))

= N2Y_(IP);dxidox; (6)
ij
thus,
s 0 0
J < N2 — AN?| 0 sin(Bi) 0
0 0 sin?(Bt)sin?(6)

(7)

Here, the equality can be saturated asymptotlcally Wlth the
controls Uy = U, = --- = Uy = U} (%, 1) = "V @ I,.

In this case, the feedback controls only act on the system;
thus, we can write

Uly(x, NOYU s (x + dx, N1)
— U ® I _ ezaM(x dx)[kM (x,dx)-0 ® I (8)

For the last equatlon we used the fact that any U’ can
be written as ei@() (bv(xd9)9) where ky, (x, dx) is a unit
vector. This has a similar form as the free evolution; thus,
by following the same line of argument, one can show that
the optimal probe state is any maximally entangled state
which, under the optimal feedback scheme, has the QFIM

r? 0 0
Ju=4N?| 0 sin2(Bi) 0
0 0 sin?(Bt)sin?(0)

In this case, the measurement in the Bell basis also saturates
the quantum Cramér-Rao bound nCov(%) > (J3&)~! (see
the Supplemental Material for details [55]); Jy** thus
quantifies the asymptotical precision limit.

To ease comparison with previous results, we rewrite
the Hamiltonian as H=x;0|+x,0,+x303 with x; =
Bsinfcos¢p, x, =Bsinfsing, x3 =Bcosf. In the
asymptotical limit, the estimation is in the vicinity of the
actual value; we can thus write

5%, = sinf cos pSB + B cos O cos p50 — B sin Osin ¢,
8%, = sin@sin 6B + B cos Osin g{)é@ + Bsin 0 cos gb&fb,
833 = cos 5B — B sin 656.

It is then easy to get 6,2+ 6x52 + 6x32 = 0B+
B256° + B%sin®(0)8¢*. This will be taken as the figure
of merit for comparison as it is used in previous studies
[37,48], which corresponds to take G = I in Tr[Cov(%)G]
under the representation of (x;,x,,x3). We note that the
choice of G = I here is just for the purpose of comparison;
the precision limit obtained under the feedback scheme is
optimal for any G—as the obtained precision saturates the
quantum Cramér-Rao bound nCov(%) > (J5*)~!; thus, for
any choice of G it also saturates the lower bound
nTr[Cov(%)G] > Tr[(J%™)~1G]. Here, n is the number of
times that the procedure is repeated, which accounts for the
classical effect; for the following, we will neglect n by
assuming that the procedure is repeated with the same
(sufficiently large) number of times.

We now compare 6x;% + 6x,% + x5 obtained from
different schemes. Under the optimal sequential feedback

scheme, we have Cov(%) = (J3*)~! with
2 0 0
JuX = 4N?[ 0  sin?(Br) 0 ;
0 0 sin?(Bt)sin®(6)
thus,
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542 + 64y + 5632 = 6B + B260” + Bsin*(0)5¢”

1 [1 2B?
T AN? L_z N sin? (Bt)] ©)

Under the parallel scheme, the precision has been
extensively studied previously [37,41,43-51,65] with the
highest precision given by Cov(%)=3(J7*)~!/[N(N+2)]
[37,48]; here,

2 0 0
Jpx =41 0 sin*(Bt) 0
0 0 sin’(Bt)sin?(0)

This corresponds to

3 1 2B?
5)(71 +5XZ +X3 )|: + :| (10)

4N(N +2 sin?(Bt)

Comparing Eqgs. (9) and (10), we can see that the optimal
sequential feedback scheme has a threefold improvement
over the optimal parallel scheme.

For a given 7, when N — o, t=(T/N)—0,
[B2/sin*(Bt)] — (1/#*), the precision limit under the
optimal sequential feedback scheme thus reaches
5X1% + 8X,% + 6x32 = 3/(4N?1?) = 3/(4T?). Note that
for the estimation of a single parameter x;, the highest
precision one can get within 7 units of time is 6x;> =
1/(4N?1?) = 1/(4T?) [3]. Itis conventionally believed that
for the simultaneous estimation of different parameters of a
magnetic field, some tradeoffs have to be made on the
probe states and the measurements, achieving the highest
precision for all parameters simultaneously is thus not
possible. Here we showed that, while the tradeoffs are
indeed unavoidable under the parallel scheme, the optimal
sequential feedback scheme can achieve the highest pre-
cision for all three parameters of a magnetic field
simultaneously.

We next show that for the estimation of general
Hamiltonian for SU(d) dynamics, the sequential feedback
scheme has similar improvement over the parallel scheme.

Given an SU (d) dynamics aided with ancillary system

Uy(x,t) = eZZ L ® I4, here {F;} are traceless self-
adjoint matrices and Tr(F;Fy) = 6y; i.e., {iF;} form an
orthogonal basis of su(d), and x = (x;,x,,...,x,2_;) are
the parameters to be estimated. We compare three schemes:
(1) the independent scheme, (2) the parallel scheme,
and (3) the sequential feedback scheme. The independent
scheme is to divide the N uses of the dynamics into
d*>—1 groups and use N/(d*>—1) dynamics in each
group to estimate one parameter Under this scheme, the
variance of each parameter 6x7ox1/{[N/(d*— )]2t2}:
(@*=1)*/(N**) and the summation of the variance is
then Z‘f:‘lléxj  [(d®> —1)3/(N?#?)]. For the parallel
scheme, the minimum summation of variance has been

obtained previously as Zd:lléx ={[d(d+1)(d*-1)]/
[4N(N+d)f*]} [48]. For the sequentlal feedback scheme,
we show that (see the Supplemental Material [55]) by
taking the maximally entangled state as the probe state and
using the optimal feedback control U} =U, =---=
Uy = UZ (%, 1), the quantum Fisher information matrix is
given by (4N2t?/d)I and the quantum Cramér-Rao bound
can be saturated. The summation of variance under the
optimal feedback scheme is thus given by Zdo 15x

[d(d®> —1)/(4N?#?)], which has an order of O(d + 1)
improvement over the parallel scheme and an order of
O(d?) improvement over the independent scheme.

Discussion and conclusion.—The comparison between
the sequential feedback scheme and the parallel scheme has
been a subject of lasting interest in quantum channel
discrimination and quantum parameter estimation. In quan-
tum channel discrimination, Acin [65] and D’Ariano et al.
[66] studied the optimal parallel scheme for the discrimi-
nation between two unitary dynamics. Duan et al. [67] then
showed the sequential feedback scheme is equivalent to the
parallel scheme for the discrimination of unitary dynamics,
and then Chiribella er al. [39] showed the sequential feed-
back scheme can outperform the parallel scheme for
discriminating quantum channels with memory effects.
The optimal sequential scheme has also been obtained for
the discrimination of two general quantum channels [68].
For the single-parameter quantum estimation, the sequential
feedback scheme is shown to be equivalent to the parallel
scheme under unitary [3] and dephasing dynamics [10,69],
and it has been conjectured that asymptotically the sequential
feedback scheme is equivalent to the parallel scheme [10].
For the multiparameter quantum estimation, Humphreys
et al. [31] showed the parallel scheme has an order of
O(d) improvement over the independent scheme for esti-
mating d parameters with commutating generators; for
general unitary dynamics, the optimal parallel scheme has
also been studied [37,48], which shows the parallel scheme
has similar improvement over the independent scheme.

Prior to this study, a general belief has been that under
unitary dynamics the sequential feedback scheme is equiv-
alent to the parallel scheme (while under noisy dynamics, the
sequential feedback scheme is believed to be either equiv-
alent to the parallel scheme or can only outperform the
parallel scheme for channels with special properties). Here,
by showing the sequential feedback scheme has an order of
O(d + 1) improvement over the parallel scheme for the
estimation of d-dimensional Hamiltonian, our study dis-
closed a unique feature for the multiparameter quantum
estimation and deepened the understanding of the relation-
ship between the sequential feedback scheme and the
parallel scheme.

Our study also sets a benchmark on the local precision
limit for the estimation of a magnetic field, which is of
practical importance for many applications. The precision
is obtained by optimizing all steps in the procedure of the
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estimation and thus represents the ultimate precision one
can achieve for the estimation of a magnetic field asymp-
totically. Our study shows that it is possible to achieve the
highest precision simultaneously for all three parameters of
a magnetic field, contrary to the conventional belief that
some tradeoffs have to be made on the precision of different
parameters. This opened the possibility and initiated the
study of using feedback controls to counteract the tradeoffs
in multiparameter quantum estimation. Future research
includes finding the ultimate precision at the presence of
general noises.

In the Supplemental Material [55], we also discussed the
possible extension to Hamiltonian parameter estimation
with a prior distribution and showed that the feedback
scheme gains over the parallel scheme through adaptive
choice of the evolution time [55]. Intuitively, the feedback
scheme gains over the parallel scheme by utilizing
the information encoded in the prior distribution to design
the feedback controls, while under the parallel scheme the
information is ignored during the evolution stage. Future
research includes quantifying the gain of the feedback
scheme exactly under any prior distribution.

The author acknowledges partial financial support from
Research Grants Council of Hong Kong with Grant
No. 538213.
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