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The entanglement spectrum of the reduced density matrix contains information beyond the von
Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems.
Here, we show that strongly disordered systems in the many-body localized phase have power-law
entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-
law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as
from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical
points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-
product state algorithm which allows us to access the eigenstates of large systems close to the localization
transition, and discuss general implications of our results for variational studies of highly excited
eigenstates in many-body localized systems.
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Introduction.—Recently, much progress has been made
towards understanding the mechanisms of ergodicity and
its breakdown in an isolated quantum many-body system.
Currently, two generic classes of many-body systems are
known: ergodic (thermal) systems and many-body local-
ized (MBL) systems [1–4]. An ergodic system is one that
acts as a heat bath for its subsystems and, therefore,
thermalizes as a result of unitary evolution [5–7]. By
contrast, in MBL systems, transport of energy is quenched
by disorder via a mechanism akin to the single-particle
Anderson localization [8]. Nevertheless, MBL systems do
reach stationary states [9,10], which are highly nonthermal
due to the emergence of extensively many quasilocal
integrals of motion (LIOMs) [11–13].
In addition to distinct dynamical properties, ergodic and

MBL systems are sharply distinguished by the microscopic
nature of their eigenstates. This difference can be probed
via quantum-information measures, such as entanglement
entropy (EE). Given a pure quantum state ψ of a
many-body system S ¼ L∪R, consisting of two subsys-
tems L and R, the EE is defined as S ¼ −

P
D
i λi ln λi,

where fλig; i ¼ 1;…; D, are the eigenvalues of the
reduced density matrix ρ̂R ¼ TrLjψihψ j, and D is the
dimensionality of the Hilbert space ofR. The EE of highly
excited eigenstates of thermal systems, which obey the
“eigenstate thermalization hypothesis” [5–7], is known to
generically scale as the number of degrees of freedom
in R (“volume law”). On the other hand, in a MBL
system, the EE of nearly all eigenstates obeys the
“area law” [11,12,14]. This weaker scaling of EE makes
MBL systems reminiscent of ground states of gapped
systems [15].

EE, while providing a quantitative measure of entangle-
ment in a many-body state, contains no information about
how it is created or how different degrees of freedom are
entangled with each other. Therefore, to gain a better
understanding of the structure of MBL and ergodic states,
we study the “entanglement spectrum” (ES) [16], i.e., the
full eigenspectrum of the reduced density matrix, fλig. The
ES has been extensively studied in free fermion [17] and
critical systems [18]. A particular advantage of the ES is
that it can characterize and classify exotic quantum orders
that cannot be described by symmetry breaking [16,19–21].
In this Letter, we obtain a more complete understanding

of the eigenstate entanglement properties in the MBL phase
and in the vicinity of the delocalization transition. We
demonstrate that the ES in the MBL phase has a power-law
structure, whose exponent is proportional to the many-body
localization length [Fig. 1]. This structure results from the
fact that the ES probes the correlations across the boundary
between the subsystems L and R, and due to the existence
of an extensive number of local operators that commute
with the Hamiltonian in the MBL phase [11–13]. Thus, the
power-law distinguishes MBL systems from ergodic sys-
tems where the ES obeys the Marchenko-Pastur distribu-
tion [22,23]. Moreover, the power-law spectrum reveals a
difference between MBL systems and ground states of
gapped integrable models [24] or free systems in the
vicinity of scale-invariant critical points [18,25], where
the ES typically decays faster than the power law
[17,18,26,27].
In addition to providing new insights into the properties

of MBL systems, the ES is of crucial importance for the
matrix-product state (MPS) optimization algorithms such
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as the “density matrix renormalization group”
(DMRG) [28]. While, in principle, the MPS naturally
encodes the eigenstates of the MBL phase due to the
area-law EE, practical realizations of the efficient optimi-
zation algorithms are an active area of research [29–33]. In
this Letter, we develop an MPS optimization to target the
highly excited states of a disordered XXZ chain in 1D, and
use the power-law ES as a sensitive benchmark of its
accuracy in large systems up to L ¼ 30 spins. Our analytic
results for the ES allow us to put bounds on the bond
dimension and demonstrate the feasibility of the DMRG
calculation of highly excited states in close proximity to the
delocalization transition.
Our work complements the recent work by Yang

et al. [23] and Geraedts et al. [34], who studied the ES
distribution and level statistics in ergodic and MBL phases,
and Monthus [35], who derived the scaling of Renyi
entropies in the MBL phase in first-order perturbation in
the coupling between the subsystems.
Model.—We consider a standard model of MBL—a

XXZ spin-1=2 chain of L spins with a random z field [4]

H ¼ 1

2

XL−1

i¼1

½Jxðσxi σxiþ1 þ σyi σ
y
iþ1Þ þ Jzσ

z
iσ

z
iþ1� þ

XL

i¼1

hiσ
z
i ;

ð1Þ
where hi ∈ ½−W;W� are independent, uniform random
numbers, and σα are the Pauli matrices. We choose open
boundary conditions and assume a bipartition that separates
the system into equal L and R parts [Fig. 1, inset].
The model (1) has been extensively studied and is

believed to capture all essential properties of the MBL
phase and the localization transition. For example, it is
known that the model supports a MBL phase at strong
disorder, an ergodic phase at weaker disorder, and an
integrable point at zero disorder. For Jx ¼ Jz ¼ 1, the
transition between the two phases was estimated to be at

Wc ≈ 3.5 based on a variety of probes, for example, the
level statistics [4,36,37], fluctuations of EE [38], and the
statistics of the matrix elements of local operators [39].
Power-law entanglement spectrum.—Before discussing

numerical results for the model (1), we infer the general
properties of the ES in the MBL phase from the existence of
LIOMs [11–13,40]. In the “fully” MBL phase (i.e., when
there is no mobility edge in the spectrum [36,39]), there
exists a quasilocal unitary transformation which diagonal-
izes the Hamiltonian by rotating the physical spins σi into
the exactly conserved LIOMs τi. The latter form a complete
basis of the Hilbert space, and any many-body eigenstate is
a simultaneous eigenstate of all τzi , i ¼ 1;…; L.
Let us expand a given eigenstate jIi over the complete

basis formed by tensor product of eigenstates in L and R

jIi ¼
X

fμgL;fτgR
CfμgLfτgR jfμgLi ⊗ jfτgRi: ð2Þ

In the MBL phase, the values of LIOMs in L or R, fμgL
and fτgR, respectively, label the basis vectors. In this basis,
the reduced density matrix of the state (2) forR subsystem
reads hfχgRjρ̂RjfτgRi ¼

P
fμgLC

�
fμgLfχgRCfμgLfτgR , where

the sum over all configurations of the L subsystem
arises from a partial trace. We rewrite this matrix as
ρ̂R ¼ P

fμgL jψfμgLihψfμgL j. The vectors jψfμgLi are given
by the coefficients in Eq. (2)

jψfμgLi ¼ ðCfμgLfτ1gR ; CfμgLfτ2gR ;…; CfμgLfτDR
gRÞT; ð3Þ

where each of DR ¼ 2LR components is labeled by the
different configurations of LIOMs in R.
Deep in the MBL phase, to the order Oð1Þ, an eigenstate

jIi of the full system is a product state of certain eigenstates
of L andR subsystems. Let us define the LIOMs such that
these eigenstates are labeled by configurations with all
effective spins pointing up, τzi jIi ¼ jIi for all i. Then, in the
expansion (2), the largest coefficient is jCfμgLfτgR j ¼ c0,
with both fτgR and fμgL ¼ ↑↑…↑. The typical value
of a coefficient with some of the LIOMs flipped is
suppressed as

jCf↑…↑↓↓↑gLf↑↑↓|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
r

↑…↑gR j ≈ c0e−κr; ð4Þ

where r specifies the “radius of the disturbance” (ROD) of
effective spins near the entanglement cut, and κ is the
inverse characteristic (many-body) localization length.
Note that κ may fluctuate depending on the disorder
pattern, and should not be taken as a direct analogue of
the single-particle localization length as it may not diverge
at the transition [39].
If we order the basis in R according to the ROD, the

exponential suppression (4) implies that (i) all terms in

FIG. 1. ES of the highly excited eigenstates of the XXZ
spin chain with disorder strength W ¼ 5. The spectrum has a
power law form in the MBL phase and in the vicinity of the
delocalization transition.
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jψfμgLi are suppressed as e−κrL , where rL is the ROD in the
left subsystem; (ii) components of jψfμgLi are ordered
according to their magnitude, so that the first term
(corresponding to no spin flips in R) is of order one,
the term with one spin flip is of the order e−κ, etc. Denoting
a ¼ e−κ, a typical jψfμgLi is

jψfμgLi ¼ arLðα1; α2a;α3a2; α4a2; α5a3;…; α8a3; � � � ;
α1þDR=2a

LR ;…; αDR
aLRÞT; ð5Þ

where all jαij are assumed to be of order one, and we
separated the blocks corresponding to the value of ROD
rR ¼ 0; 1; 2;…; LR by semicolons.
If different vectors jψfμgLi in Eq. (3) were mutually

orthogonal, their norm hψfμgL jψfμgLi ∝ e−2κrL would give
the eigenvalues of ρ̂R and, hence, the ES. In the
Supplemental Material [41], we demonstrate that it is
possible to perturbatively orthogonalize the vectors
jψfμgLi deep in the MBL phase where e−κ ≪ 1. This
process results in the eigenvalues labeled by the ROD rL

λðrLÞk ¼ λ↑…↑↓…↓|fflffl{zfflffl}
rL

∝ e−4κrL ; ð6Þ

where k ¼ 2rL−1 þ 1;…; 2rL labels 2rL−1 different eigen-
values in the block corresponding to the ROD rL. An extra
factor of 2 in the exponent in Eq. (6) compared to the norm
of corresponding jψfμgLi arises from the fact that all
components in jψfμgLi, corresponding to blocks with the
ROD less than rL, are canceled in the process of ortho-
gonalization [41]. Intuitively, this means that the processes,
which contribute to eigenvalues with the ROD equal to rL
in the L subsystem, flip the same number of spins in theR
subsystem.
One can view the ROD rL or, equivalently, the typical

number of spin flips, as an effective “quantum number”
underlying the structure of the ES. This is analogous to,
e.g., the subsystem’s momentum perpendicular to the
entanglement cut (which also labels the edge states if a
system has topological order); similar structure for the XXZ
ground state was pointed out in Ref. [44].
The hierarchical structure of the reduced density matrix

implies a power-law structure of the ES as a function of k.
Indeed, expressing rL as rL ≈ ln k= ln 2, and using Eq. (6),
we find the typical value of λk

λk ∝
1

kγ
; γ ≃ 4κ

ln 2
; ð7Þ

to decay as a power law with the exponent set by κ [45].
In addition, we can also understand the finite-size effects

in the ES. The power law holds until the very last block,
for which rL ¼ LL. The average value of λk for k≳ 2LL−1

will deviate from the simple power-law form (7). Instead,
ln λk will be given by the order statistics of the Gaussian
distribution arising from the log-normal statistics of the

coefficients (4) [39,46] in the MBL phase, which describes
accurately the tail of the ES, as we demonstrate in [41].
Numerical results.—To study the ES numerically in the

XXZ chain (1), we use (i) full exact diagonalization (ED)
for L ¼ 10, 12, 14 spins, (ii) “shift and invert” algorithm
(SI) [47] for L ¼ 16, 18, 20, and (iii) a new implementation
of the MPS variational optimization for larger L (below, we
present data for L ¼ 30). Our MPS algorithm combines the
advantage of SI spectral transformation, which ensures low
energy variance and, hence, the purity of eigenstates, with a
fast conjugate-gradient linear solver. The MPS optimiza-
tion converges efficiently when the bond dimension χmax is
such that lnðχmaxÞ ≫ S, where S is the maximum EE for all
partitions of the chain. Using ITensor libraries [48] with
conserved Uð1Þ symmetry and an iterative local scheme,
we can reach χmax ≈ 500, thus, capturing a big part of the
ES without finite-bond effects [41].
Figure 1 illustrates the log-averaged ES, defined as

fhln λkig, where λk are ordered from largest to smallest
magnitude, and brackets denote averaging over disorder, as
a function of the eigenvalue number k, for various system
sizes L. Consistent with our expectations (7), in the MBL
phase (W ¼ 5), the ES exhibits clear power-law behavior.
In all cases, we target the eigenstates close to energy E ¼ 0,
which is roughly in the middle of the many-body band.
The data are averaged over a few thousand disorder
realizations for L ≤ 16, and over a few hundred realizations
for L ¼ 18, 20. For L ¼ 30, we used χmax ¼ 200 and 1000
disorder realizations.
Note that, while we find excellent agreement between

ED and MPS results for the few largest Schmidt eigen-
values, the lowest Schmidt values obtained by the MPS lie
slightly below the ED data for L ¼ 20. This is an artefact of
our fixed bond dimension χmax ¼ 200, which bounds the
slope of the ES through its effect on the smallest Schmidt
values. For the given χmax, we expect the MPS slope to be
close to the exact slope of the system L ∼ 2 log2 χmax, or
L ∼ 14 in our case (as Fig. 1 confirms). Note that this is a

FIG. 2. Power-law exponent γ, extracted from the fit of the ES,
hln λki, increases with disorderW. Theoretical prediction refers to
γ extracted from the scaling of the matrix elements in Ref. [39].
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subtle effect which only affects the tail of the ES, while the
quantities such as energy or EE are converged to machine
precision [41].
Next, we study the behavior of the exponent γ extracted

from the power-law fit of λk for small k. The exponent γ
always decreases with system size L, as can be seen in
Fig. 2. In theMBL phase, we expect the exponent to saturate
to a finite value, which is set by κ governing the coefficients
in Eq. (2). To the leading order in perturbation, the relevant
coefficients are a product of matrix elements in L
and R over the energy denominator Δ, CfμgLfτgR≈hfμgLjSαL=2jf↑gLihfτgRjSαL=2þ1jf↑gRi=Δ. The typical
value of C corresponds to when both matrix elements flip
a similar number of spins. The value of κ can be approxi-
mated as 2κ ≈ 2κ0 þ ln 2, where κ0 governs the decay of the
many-body analogue of the Thouless conductance G,
introduced in Ref. [39]. Figure 2 shows that this theoretical
expectation describes accurately the power-law coefficient γ
at sufficiently large L. Note that, in the ergodic phase
(W ¼ 0.5), the power γ is not well defined as the ES obeys a
qualitatively different Marchenko-Pastur distribution [23].
Sample-to-sample fluctuations.—So far, we discussed the

behavior of the log-averaged ES. Now, we consider the
distribution of the ES for different disorder realizations in
order to understandwhether theES statistics is dominated by
sample-to-sample fluctuations or, rather, the fluctuations
between different eigenstates in a single disorder realization.
The distribution of the largest ES eigenvalue, λ1, and its

dependence on L is illustrated in Fig. 3. In the ergodic
phase (W ¼ 0.5), the center of the distribution of λ1 shifts
to smaller values [22], and becomes increasingly narrow
with increasing L, reflecting the fact that all eigenstates
become typical. On the other hand, deep in the MBL phase,
the distribution of λ1 depends very weakly on L, as
expected (Fig. 3, W ¼ 6.5). Moreover, the peak in λ1 is
very close to one, indicating that eigenstates in the MBL
phase are well approximated by product states.
Finally, near the transition (Fig. 3, W ¼ 2), the distri-

bution of λ1 becomes very broad, reflecting the fact that
certain disorder realizations are insulating, while others are
metallic. Using ED data, we also average the leading
eigenvalue over a window of eigenstates from a given

disorder realization, and bin the resulting hln λ1ie:s:.
Distribution of hln λ1ie:s:, shown by dashed lines in
Fig. 3 (middle), has the same width as the full distribution
of λ1. This implies that the broad distribution of λ1 near
the MBL transition originates from sample-to-sample
fluctuations, provided that one fixes the position of the
entanglement cut. Note that, recently, large entanglement
fluctuations with respect to the position of the cut within the
same disorder realization were reported [49].
Discussion.—We demonstrated a power-law decaying ES

in MBL states, which is in sharp contrast with both thermal
systems, whose ES is “flat” [23], and ground states of gapped
free or integrable models, whose ES decays faster than power
law [17,18,26,27]. We used this distinct feature of MBL
systems to perform highly sensitive benchmarks of our MPS
algorithm.Using theMPS algorithm,we obtained eigenstates
of large systems at disorder W ¼ 4, which is closer to the
MBL transition than previously reported [29–33].
The power-law ES implies that finite-size effects from

the truncation of the ES—a standard procedure in MPS-like
algorithms—typically decay algebraically with L. In Fig. 4,
we show the estimate for the MPS bond dimension required
to reproduce the exact EE within 1%. While, at weak
disorder, the estimate grows exponentially with L, in the
MBL phase, it saturates to a constant in a power-law

FIG. 3. Distribution of λ1 across the MBL transition for different L. Solid lines indicate full distribution, dashed lines show distribution
of λ1 between different disorder realizations. Disorder strength is W ¼ 0.5 (left), W ¼ 2 (middle), W ¼ 6.5 (right).

FIG. 4. Number of singular values required to reproduce the EE
with fixed precision (99%) decreases with disorder strength W
and saturates at strong disorder. The bars represent statistical
fluctuations, which are most pronounced near the transition.
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fashion (not shown). Note that, even at disorderW ≥ 3, we
have a value of N ≲ 100, which explains the success of our
MPS algorithm and suggests it is feasible to apply such
algorithms even closer to the MBL transition.
Finally, the organization of the ES, according to the

number of spin flips by the boundary perturbation, may
have a number of consequences beyond the power-law
structure of the ES. In particular, it would be interesting to
explore its significance for the ES level statistics studied in
Ref. [34], and use it to extract κ and other information about
LIOMs from individual eigenstates.
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