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Anisotropic X-Ray Dark-Field Tomography: A Continuous Model and its Discretization
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The x-ray dark-field signal measured in grating interferometers is anisotropic, depending on both
the beam direction and the grating orientation with respect to the sample. We present a novel general
closed-form, continuous forward model of the anisotropic dark-field signal. Furthermore, we derive a
discretization using spherical harmonics, leading to a large-scale linear inverse problem. We present first
experimental results of a wooden sample, demonstrating marked advantages over previous results, in
particular, the resolution of multiple scattering directions in one volume element.
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Introduction.—Modern grating-based x-ray imaging
enables the extraction of phase-contrast (refraction) and
dark-field (scattering) information in addition to the con-
ventional measurement of absorption [1-4]. The dark-field
signal provides scattering information at the subpixel level
and has shown great utility in several fields of application.
Among others, there have been promising studies regarding
breast imaging [5,6], lung imaging [7,8], microbubbles as
contrast agents [9], and musculoskeletal imaging [10,11] as
well as materials testing [12].

Contrary to conventional absorption or phase-contrast
data, the dark-field signal is orientation dependent; i.e.,
the measured signal depends on both the orientation of
the imaged sample and the orientation of the x rays. As a
grating interferometry setup is sensitive only to signals
orthogonal to the grating bars, the anisotropic scattering
signal can be measured and recorded [13].

In order to perform a tomographic reconstruction of this
anisotropic signal, Malecki et al. derived a model of
coherent superposition for directional dark-field imaging
[14]. This led to a forward model based on the discrete
superposition, enabling component-based tomographic
reconstructions of the anisotropic signal. After the
reconstruction of the components, rank-2 tensors were
fitted for each volume element [15]. The method is called
x-ray tensor tomography (XTT) and recovers the covari-
ance of the scattering assuming a Gaussian scattering
model [13]. Vogel et al. [16] then showed that XTT can
be formulated as a regular linear inverse problem, allowing
the application of established iterative reconstruction meth-
ods. The XTT method is outlined schematically in Fig. 1.
XTT has shown the capability of resolving directional
information within carbon fiber samples [15], dentinal
tubules, and wooden samples [16]. Recently, Jud et al
[17] studied structural information recovered from both
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FIG. 1. Schematic overview of XTT: The sample is measured
with a grating interferometer from many different orientations
sampling the unit sphere. The resulting dark-field images are fed
to an iterative reconstruction algorithm. Several component
volumes are reconstructed simultaneously, each representing
scattering information in a certain direction. Finally, these
volumes are merged into tensors and the resulting voxelwise
anisotropic scattering information can be used to extract infor-
mation about subvoxel-sized structures, such as their orientation.

microCT and XTT. They concluded that XTT can success-
fully extract dentinal tubules (~2 ym) using a significantly
lower-resolution imaging setup than microCT. In contrast
to XTT, the sample had to be irreversibly cut for microCT
such that it fit the field of view, in order to achieve the
high resolution necessary for the extraction of the dentinal
tubules.

In more detail, the forward model used for XTT is given
as follows [14,16].

Definition 1: XTT forward model—Let L; denote the
path of the x ray corresponding to the jth dark-field
measurement d; € R. Further let /; € S, [18] denote the
direction of L, and ¢; € S, the direction orthogonal to the
grating bars within the plane defined by the gratings.
Choosing a finite set of K scattering directions u; € S,,
the squared scattering magnitudes 7, : R* — R correspond-
ing to u; at each sample location relate to the dark-field
measurement d; as follows:
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dj = exp (‘ i(llj x| (. 17))? lj ﬂk(x)dx>- (1)

k=1

The reconstruction process of XTT thus involves the
selection of a finite set of scattering directions u;, the
inversion of the forward model (1) to recover the corre-
sponding scattering magnitudes 7;, from the dark-field
measurements d;, and the subsequent fitting of a rank-2
tensor to the scattering data (n;,u;) at each volume
element (voxel).

While XTT shows very promising results, in particular, for
the extraction of the orientation of microstructures (which
corresponds to the direction of least scattering in each tensor),
there are two major limitations of this method. First, as
the dark-field signal corresponds to microstructures which
are much smaller than the resolution of the detector, the
assumption of a single structure orientation in a single voxel is
very restrictive and erroneous as soon as multiple orientations
are present at the subvoxel level. In addition, the discrete
nature of the forward model (1) limits the possibility of
analyzing the measurement process mathematically or to
incorporate more natural representations of scattering func-
tions, such as spherical harmonics. Second, the reconstruction
results of XTT are not invariant to the selection of the
scattering directions u;. This results in local variations of
the reconstructed magnitude, if some parts of the unit sphere
are sampled more densely by the u; than others, and global
variations depending on the chosen total number of u;.

In the following, we present a novel general closed-form,
analytical forward model for anisotropic x-ray dark-field
tomography (AXDT) using generic spherical functions to
represent the scattering magnitudes. This model is indepen-
dent of the weighting term corresponding to the imaging
physics and, thus, easy to adapt to different physical terms.
Furthermore, by using generic spherical functions, we
eliminate the limitations of rank-2 tensors. In addition, we
show that the previous model by Malecki et al. [14] is a
special case of this continuous model, which subsumes all
previous findings, including simulation results, under this
new hood. Finally, we provide a concrete reconstruction
formula using spherical harmonics to represent the scattering
functions, and we show first experimental results demon-
strating the capability of resolving multiple scattering
directions within single volume elements.

The following two assumptions are made in this work:
First, we neglect any effects of polychromaticity and
consider only the integrated scattering signal over the
entire x-ray spectrum. This is equivalent to what is usually
done for attenuation-based computed tomography. Second,
we assume an exponential model, as Strobl et al. [19] found
that the situation of dark-field imaging is equivalent to
spin-echo small-angle neutron scattering (SESANS), for
which Andersson et al. [20] showed that the exponential
model accounts for multiscattering.

Methods.—The XTT forward model (1) involves discrete
summation over scattering magnitudes weighted according

to the corresponding scattering direction. The most natural
continuous equivalent of a summation over scaled unit
vectors is a surface integral over the unit sphere. For
generality, we also replace the concrete weighting of (1)
by an abstract weighting function A. This leads to our
proposed closed-form continuous model for AXDT.

A continuous forward model:  Definition 2: AXDT con-
tinuous forward model—Let L ; denote the path of the x ray
corresponding to the jth dark-field measurement d; € R.
Further let /; € S, denote the direction of L; and t; € S,
the direction orthogonal to the grating bars within the
plane defined by the gratings. The continuous forward model
relating the spherical scattering magnitudes 7: S, x R* — R
to the dark-field measurement d; is defined as

d_exp< //Sz (u, 15, 1) x)dQ(u)dx>, 2)

4z
where h:S, xS, xS, - R denotes a square integrable
weighting function and dQ denotes the standard solid
angle [21].

In the following, we will focus on the discretization of
the inner surface integral for efficient practical implemen-
tations of the forward model. The outer integral is a
standard line integral, for which discretization methods
are well known already from the field of conventional
computed tomography; see, for example, [22,23].

There are many methods for numerical computation of
surface integrals over the sphere, but they all involve
approximating the surface integral via a weighted sum of
function evaluations at discrete points on the sphere. For an
excellent overview on this topic, we refer to Ref. [24]. If one
applies a cubature method, for example, using spherical
designs [25] using equal weights for all sampling directions,
the discrete XTT forward model (1) becomes a special case
of the continuous AXDT forward model (2) up to a constant
factor depending on the number of evaluation points. In the
following, we present the use of spherical harmonics for
discretization of the AXDT forward model (2).

Discretization using spherical harmonics: One of the
most powerful tools to deal with spherical functions is the set
of real-valued spherical harmonics {V}'}i_o  comm——s... k-
Spherical harmonics provide an orthonormal basis for square
integrable functions f € £(S,) [26]; thus, f can be
decomposed as

) k
F=Y> v, (3)

k=0 m=—

where the f7}' denote the spherical-harmonics coefficients.
The index k is commonly called degree and m the order of
the respective basis function. For a general overview on
spherical harmonics we refer to Ref. [27].

Theorem 1: Spherical-harmonics-based discretization.—
Let {h}'(t;,1;)} and {n(x)} denote the spherical-

harmonics  coefficients of h(-,7;,/;) and 75(-,x),
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respectively. Further let K € N denote a truncation degree.
Then a discrete approximation to Eq. (2) in terms of the
spherical-harmonics coefficients of 7 is given as follows:

djzexp< zi: Zk: hy (1 /, T(x)dx). (4)

Proof.—Consider the inner integral in Eq. (2). By applying
Parseval’s theorem for spherical harmonics we have

[ et 92 _ LSS ()
u,t;, u,x = X
S, / n 47[ 4ﬂk:0m:— nk
lK k
— h .
4n'k= 3= x)

(5)

Inserting this approximation into the forward model (2) and
using the linearity of the integral to swap integral and sum,
Eq. (4) follows directly. u

As scattering is a symmetric process, it is a valid
assumption that the function A (u, ¢; - [;) is point symmetric
in u €S, with respect to the origin, i.e., h(u, tj,lj) =
h(—u,t;,1;). This means that h}'(¢;,1;) = 0 for any odd
degree k. We can thus limit the computation to even
degrees, which intrinsically leads to a symmetric recon-
structed function 7(u, x).

AXDT reconstruction as a linear inverse problem: The
discretized forward model using spherical harmonics (4)
can be used to formulate the recovery of n from the
measurements d; as a linear inverse problem, as was done
in Ref. [16] for the XTT forward model (1).

First, we discretize our volume of interest into / cubic
voxels. Then we form the system matrix P € R/*! con-
sisting of the discretized line integrals corresponding to
each measurement d;, where j = 1, ..., J, and J denotes the

FIG. 2. Volume visualization of the wooden sticks data set. A
marks a voxel within the front stick (see Fig. 4), while B marks a
voxel within the region where the two sticks touch (see Fig. 5)
(T = top, F = front, and R = right).

total number of measurements (the number of detector
pixels times the number of dark-field images). Let
further p = [—1In(d;)] € R and W}' = diag(h}*(t1. 1), ...,
hy(ty.1;))/(4x) € R, Finally, let [7}'] € R’ denote the
discretized spherical-harmonics coefficients representing
the scattering magnitude #. Then the AXDT reconstruction
problem can be formulated as the linear inverse problem

k

K
p= > Wipn

k=0 m=—k
)

— (WP o WEP o wEP)| | )
ng

Experiments and results.—To evaluate our proposed
method, we measured a sample consisting of two wooden
sticks (see Fig. 2 for an illustration). A wooden stick
contains fiberlike structures in the direction of its growth.
Thus, the scattering is assumed to be horn-torus-shaped
orthogonally to the direction of growth. In the region where
the two crossed sticks touch, we expect a superposition of
both of the scattering functions corresponding to each stick.

The sample was measured with a symmetrical x-ray grating
interferometer with an intergrating distance of 91 cm. Three
gratings were used: two 10 um period absorption gratings

(a) XTT (b) AXDT

(d) AXDT

(¢) XTT

FIG. 3. Slice visualization of XTT (a,c) and AXDT (b,d)
reconstructions. Positive function values are colored blue, while
negative ones are displayed in red. The upper row shows the slice
parallel to the front plane which contains voxel A (see Fig. 2), the
bottom row the slice containing voxel B. For clarity of visuali-
zation, we show only every fifth tensor or scattering function and
scale them to comparable sizes.
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(c) XTT
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FIG. 4. Scattering function corresponding to voxel A, which
contains one main structure orientation (see Fig. 2). Positive
function values are colored blue, while negative ones are
displayed in red. The upper row shows a front view; the bottom
row shows a bottom view. From left to right: (a), (c) XTT tensor
and (b), (d) AXDT reconstruction.

anda5 um period phase grating. X rays were generated with a
tungsten-target x-ray tube run at 60 kVp and 13.3 mA current.
The spectrum was filtered by 2 mm aluminum. A Varian
PaxScan 2520D flat-panel detector with a CsI scintillator and
800 x 800 pixels of size 127 pum? was used to record images.
For each viewpoint, a series of eight phase-stepping images
was acquired with 1 s exposure time each, from which the
dark-field images were extracted by first-order Fourier
approximation [3]. The recorded raw data were rebinned
by a factor of 2 prior to any processing. In total, dark-field
images were acquired from 1200 different viewpoints sam-
pling the unit sphere, yielding a total measurement time of
345 min. For details of the setup we refer to Refs. [3,4,28], and
Supplemental Material [29].

The reconstruction process was realized in our C++
framework CampRecon [30] for large-scale inverse prob-
lems. To compute the system matrix we used a ray-driven
multi-GPU projector written in OpenCL developed by
Fehringer ef al. [31]. For the spherical harmonics and
the corresponding visualization we used the Matlab
toolbox provided by Politis [32]. The entries of the
diagonal matrices W} were precomputed. Each
reconstruction was computed using 20 iterations of the
conjugate gradient method [33]. All computations were
performed on a computer equipped with dual Intel Xeon
E5-2687W v2 with 128 GB RAM and dual Nvidia
GeForce GTX 980Ti GPU accelerators.

For AXDT reconstruction we used the weighting
function h:S; xS, xS, = R, (u,t,1) > (|I x ul(u, 1))?
from Malecki et al. [15]. The linear inverse problem (6) was
implemented using K = 4 and m = 0, 2, 4, exploiting the
previously mentioned point symmetries as well as the fact that
this particular function # is the product of four functions of
spherical-harmonic degree one. The reconstruction process
thus effectively computes 15 77" volumes with an isotropic
voxel size of 254 ym, and the total time for computations
was 50 min.

4B p ‘ “

(@) XTT (b) AXDT
- @
F A

(¢) XTT (d) AXDT

FIG. 5. Scattering function corresponding to voxel B, which
contains two structure orientations (see Fig. 2). Positive function
values are colored blue, while negative ones are displayed in red.
The upper row shows a front view; the bottom row shows a
bottom view. From left to right: (a), (c) XTT tensor and (b), (d)
AXDT reconstruction.

For comparison we also reconstructed the same data
using the previous XTT approach (1) as in Ref. [16] with
N = 13, effectively computing 13 #; volumes before
performing the rank-2 tensor fit. The total time for
computations here was 45 min.

Figure 3 shows slice visualizations of both reconstruc-
tions. The two slices were chosen to contain the two voxels
A and B as marked in Fig. 2. Voxel A is within the front
stick, where the wooden fibers have only one main ori-
entation. The fiber orientation corresponds to the direction of
least scattering and is recovered correctly for both the AXDT
and XTT reconstructions; see Figs. 3(a) and 3(b). Voxel B is
in the region where the two sticks touch and accordingly
contains two main structure orientations. Here the XTT
approach [Fig. 3(c)] fails as expected, while the AXDT
approach [Fig. 3(d)] succeeds in distinguishing the two
orientations. The scattering functions corresponding to
voxels A and B are shown in detail in Figs. 4 and 5. In
particular, Fig. 5 shows the limited usefulness of the rank-2
tensor for multiple structure orientations. It is obvious that
the AXDT approach yields reconstructions which contain
information that is not retrieved by the XTT approach.

For the AXDT approach, “negative” scattering magnitudes
can be observed along the direction of the microstructure of
the sample (see Figs. 4 and 5). We currently hypothesize
that this is caused by the weighting function /, which does not
perfectly describe the measurement if the microstructure
is measured along the x-ray direction. Applying a non-
negativity constraint in the reconstruction algorithm may
solve this issue, along with a better model of weighting.

Because of the similarity of SESANS and dark-field
imaging, it may be possible to apply the presented method
to SESANS in a similar fashion.

Conclusion.—In this Letter, we presented a novel general
closed-form, continuous forward model for anisotropic
dark-field imaging, which, to our knowledge, is the first
of its kind. This model is independent of the actual
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formulation and discretization of the functions 4 and 7 and
allows mathematical analysis of the anisotropic dark-field
imaging process, for example, studying its null space to
enable error estimates or simplified acquisition protocols.
In addition, we introduced a discretization of the scattering
function using real-valued spherical harmonics and derived
a large-scale linear inverse problem. This combined new
approach, termed AXDT, improves upon the previous XTT
approach significantly, leading to scattering magnitudes
which are invariant, while allowing the resolution of
multiple scattering directions within a single volume
element. The latter is of particular interest, as the dark-
field signal corresponds to microstructures much below the
resolution of the detector. Thus, the presence of multiple
microstructure orientations in one single voxel is very
likely. A first experiment confirms these findings and
demonstrates the future potential of AXDT.
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