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The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya
interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two
magnon branches with opposite topological charge. As a consequence of their topological nature, their
projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of
electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned
widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are
rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ̄ of the
surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-
dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the
(111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered
spin model, and suggest experiments for the detection of the topological features.
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Introduction.—Ferromagnetic pyrochlores attracted
attention with the experimental discovery of the magnon
Hall effect [1]. This transverse transport is explained by a
Berry curvature [2–4] which is introduced by the
Dzyaloshinskii-Moriya (DM) interaction [5,6]. In addition,
the Chern numbers of magnon bulk bands are nonzero, and
in accordance with the bulk-boundary correspondence
[7,8] topological magnons are found at the edges of
two-dimensional kagome lattices [9,10]. Hence, systems
featuring topological magnon states are dubbed “topologi-
cal magnon insulators” (TMIs) [9], because they exhibit
many features of electronic topological insulators [11].
In this Letter, we predict that ferromagnetic pyrochlores

exhibit features of another important class of topologically
nontrivial systems, namely electronic Weyl semimetals
[12,13]. Their magnon dispersion relations possess a pair
of Weyl points on a line in reciprocal space which is along
an external magnetic field; the Weyl points possess oppo-
site topological charges of �1.
At a surface, magnon surface states connect the surface-

projected Weyl points; since the associated constant-energy
cuts are open they are analogs of Fermi arcs in electronic
Weyl semimetals. These arcs turn out to be tunable: upon
rotating the magnetic field within the surface plane they
follow the likewise rotated Weyl points. An out-of-plane
rotation reduces the length of the arcs until they collapse at
the center Γ̄ of the surface Brillouin zone (when the field is
perpendicular to the surface), a feature calling for exper-
imental verification.
We recall that recently magnon Weyl points have

been predicted in breathing pyrochlore lattices with spin
anisotropy and a noncollinear ground state [14]. However,
the present model relies on a ferromagnetic ground state

and on the DM interaction; it is thus a natural extension of
TMIs on kagome lattices [9,10] to three dimensions.
Model and spin-wave analysis.—The pyrochlore

lattice is a face-centered cubic (fcc) lattice of corner-sharing
tetrahedra, with four atoms in its basis [Fig. 1(a)]. Lacking
inversion symmetry with respect to the midpoints of bonds,
it features DM interactions. Moriya’s symmetry rules [6]
indicate that the DM vectors Dij are perpendicular to
the bond that links site i with site j; they are situated at
the faces of cubes that enclose tetrahedra [Fig. 1(b)]
[1,15,16].
The minimal magnetic Hamiltonian which includes

isotropic symmetric exchange Jij, DM interactions Dij,
and a Zeeman term with external magnetic field B reads

H ¼ −
X

ij

Jijsi · sj þ
X

ij

Dij · ðsi × sjÞ −
X

i

B · si; ð1Þ

FIG. 1. Pyrochlore lattice. (a) Part of the crystal structure.
(b) Four basis sites (1–4) with the nearest-neighbor DM vectors
given by D12¼D=

ffiffiffi
2

p ð0;−1;−1Þ, D13¼D=
ffiffiffi
2

p ð−1;1;0Þ, D14¼
D=

ffiffiffi
2

p ð1;0;1Þ, D23¼D=
ffiffiffi
2

p ð1;0;−1Þ, D24¼D=
ffiffiffi
2

p ð−1;−1;0Þ,
and D43¼D=

ffiffiffi
2

p ð0;−1;1Þ.
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where si is the spin operator at site i. For Jij > 0 the
ferromagnetic state is the ground state with order parameter
n ¼ B=B; the collinearity is stable against the DM inter-
action [1]. In the following, the (tiny) rigid energy shift due
to the Zeeman energy is neglected and only n is kept for
simplicity, that is, the limit B → 0þ is considered.
As argued in Ref. [1], only the component of Dij parallel

to n contributes to the linear spin-wave Hamiltonian. The
spin-wave approximation is performed in an orthonormal
basis fl;m; ng, where ladder operators s�i ¼ sli � ismi are
introduced. After an adequate Holstein-Primakoff [17]
transformation, a Fourier transformation of the boson
operators yields the 4 × 4 spin-wave Hamilton matrix
Hk. Allowing for nearest-neighbor interactions with
strength JN as well as next-nearest-neighbor interactions
with strength JNN, the matrix elements read Hk;μμ ¼
6sðJN þ JNNÞ, and Hk;μν ¼ −2sðJN þ iDn

μνÞ cos ðk · δNμνÞ −
2sJNN cos ðk · δNNμν Þ for μ ≠ ν; here, Dn

μν ≡ Dμν · n and δNμν
(δNNμν ) connects nearest (next-nearest) basis sites μ and
ν (μ, ν ¼ 1, 2, 3, 4). To mimic pyrochlore systems, we set
s ¼ 1=2 for all basis sites.
We now analyze magnon spectra ενk and Berry curva-

tures [3,4,9,18–20]

Ωνk ≡ i
X

μ≠ν

huνkj∂kHkjuμki × huμkj∂kHkjuνki
ðενk − εμkÞ2

; ð2Þ

where juνki is an eigenvector of Hk with energy ενk. Ωνk
encodes the nontrivial topology of the bulk bands which is
related to global symmetries: inversion symmetry I (time-
reversal symmetry T ) causes Ωνk to be even (odd) in k.
Typical results are summarized in Figs. 2(a)–(d). (a) For

JNN ¼ 0 and D ¼ 0, the four magnon bands are not
gapped, the third and fourth band are dispersionless and
degenerate. Ωνk vanishes in the entire Brillouin zone (BZ)

since I and T are conserved. The direction n of the
magnetic field does not affect the spectrum. (b) T is broken
for D > 0, the upper two magnon branches become
dispersive, and Ωνk is nonzero for all bands. The band
structure depends sensitively on n. As long as n is not
within a f100g plane, a tiny fundamental gap between the
first and second band shows up (inset). More strikingly, on
any line in reciprocal space through the origin Γ and
parallel to n, the second and the third band cross each other
at two k. These k lie symmetrically to Γ, their spacing is
determined by n and jDj. As we will show, these band
crossings are Weyl points [red circle; cf. Fig. 3(a)]. (c) The
Weyl points are robust against JNN ≠ 0 (inset) as I remains
preserved. For antiferromagnetic JNN (JNN < 0, small
enough to retain the ferromagentic ground state), the
Weyl points are located in energy so that no other bulk
band has the same energy (for any n), that is, they are type-I
Weyl points [21]. (d) The Weyl cones are tilted upon
varying n or JNN. In particular type-II Weyl points [21] can
occur for JNN > 0.
Topology of bulk bands.—The nontrivial topology is

brought about by the DM interaction, as is evident from
expanding Eq. (1) in terms of small deviations δ from
the ferromagnetic ground state (the following arguments
are in line with Refs. [1,2,22,23]). Without loss of general-
ity, we take n ¼ ẑ and si ¼ ẑþ δi. Neglecting for the
moment prefactors, a constant, and the Zeeman energy,
the deviations yield δH ¼ δHex þ δHDM, with δHex¼
−
P

ijJijðδziþδzjþδi ·δjÞ and δHDM¼P
ijDijðδxi δyj−δyi δxjÞ.

Terms in first order in δi in δHDM cancel becauseP
jDij ¼ 0.
The inversion I interchanges i ↔ j, it is obeyed by both

δHex and δHDM (note that Dij ¼ −Dji). δHex also obeys
the pseudotime-reversal T which is a spin flip δi → −δi
followed by a rotation in spin space by π about an axis
perpendicular to ẑ. However, this does not apply to δHDM.

FIG. 2. Magnon spectrum of ferromagnetic pyrochlores for
JN ¼ 1 meV and (a) JNN ¼ D ¼ 0, (b) JNN ¼ 0,
D ¼ 0.28 meV, (c) JNN ¼ −0.1 meV, D ¼ 0.28 meV, and
(d) JNN ¼ þ0.1 meV, D ¼ 0.28 meV. The magnetic field points
along n ¼ ð1; 1; 1Þ= ffiffiffi

3
p

, i. e., along Γ → L. Red circles in (b), (c),
and (d) mark Weyl points. See Fig. 3(a) for the high-symmetry
points of the fcc BZ.

FIG. 3. Weyl points and Berry curvature. (a) Fcc BZ with
high-symmetry points, field direction n, and Weyl points (dots).
(b) Normalized dipole vector field Ω2k of band 2 in the
kx ¼ kz plane, with Γ and L points indicated. The color scale
depicts the divergence of the vector field (blue: negative; gray:
zero; red: positive); the two Weyl points appear in the center
of the blue and red spot, respectively. Parameters as in
Fig. 2(c), n ¼ ð1; 1; 1Þ= ffiffiffi

3
p

, i. e., along Γ → L (indicated by
the black arrow).

PRL 117, 157204 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

7 OCTOBER 2016

157204-2



With I preserved and T broken, a single pair of Weyl
points is allowed [24]. As I implies ενðkÞ ¼ ενð−kÞ the
two Weyl points appear at the same energy.
The above mechanism is at variance with that predicted

in Ref. [14]. There, the nontrivial topology is brought about
by a local spin anisotropy, and the resulting complicated
ground state allows for more than two Weyl points.
In the remainder of this Letter, we present results

obtained for the exchange parameters of Fig. 2(c), i. e.,
for type-I Weyl points.
An integer Chern number Cν ¼ ð1=2πÞ RS Ωνk · ~ndS is

calculated for each band ν; S is a closed and oriented
surface in the bulk BZ with surface normal ~n. Letting
~n ¼ const., S is a 2D slice of the 3D BZ. By moving the
slice in the BZ, CνðλÞ can be calculated as a function of the
position λ of the slice [25].
C1ðλÞ ¼ −sgnðDÞ is constant (here, ~n ¼ n) because a

fundamental band gap separates the lowest from the other
bands [inset in Fig. 2(b)]. C2ðλÞ and C3ðλÞ are not globally
but piece-wise constant because these bands touch each
other at the Weyl points. The latter are monopoles of the
Berry curvature vector field. To prove that the band
crossings are Weyl points we show the Berry curvature
vector field of band 2 [Fig. 3(b)]. There are two monopoles
that appear as source (red spot, offset from Γ in the
direction of the magnetic field) and sink (blue spot) of
the vector field, providing evidence that the Weyl points
have opposite topological charge qtop2 . Numerical integra-
tion yields qtop2 ¼ þ1 for the “red” (source) and qtop2 ¼ −1
for the “blue” (sink) Weyl point [26].
Recapitulating, we have identified Weyl points in the

bulk band structure of pyrochlore systems whose positions
in reciprocal space and cone tilting can be tuned by an
external magnetic field. A prominent feature of electronic
Weyl semimetals are Fermi arcs which are surface states

that connect projections of Weyl points onto the surface
BZ. We now show that pyrochlore systems exhibit the
magnon analogs of the (electronic) Fermi arcs, that is
magnon arcs.
Surface states.—The surface magnon dispersion is ana-

lyzed in terms of the spectral density for semi-infinite
systems which is calculated by Green function renormal-
ization [27]. We exemplarily study the (111) surface and
choose a quite large DM interaction (D=JN ¼ 0.5) to
provide a clear picture. We would like to stress that the
discussion is qualitatively valid for all surfaces and all D.
The (111) surface of the pyrochlore lattice is a kagome

lattice; the resulting surface BZ is a hexagon [Fig. 4(a)].
Note that a magnetic field with an in-plane component
breaks the rotational symmetry of the surface BZ. The
magnetic field is completely in plane along ½112̄�; hence,
the projections of the Weyl points are situated on the line
M̄0 − Γ̄ − M̄0 [Fig. 4(b)].
The bulk bands appear as broad features in (b). The gaps

between band 1 and 2 as well as band 2 and 3 are bridged
by two topological surface states, TSS(1) and TSS(2). The
latter obey the bulk-boundary correspondence [7,8,10,28].
Since the Chern number of band 1 equals−1, thewinding

number of the gap between band 1 and 2 equals −1 as well
(the winding number is the sum of all Chern numbers of the
bands below the considered gap). As the winding number
dictates the number of topological surface states, there has to
be one topological surface state: TSS(1). The bulk-boundary
correspondence also holds for TSS(2), since theWeyl points
carry topological charges (Chern numbers).
To show that TSS(1) and TSS(2) differ qualitatively, we

present constant-energy cuts of the surface spectrum that
cover the band gaps inwhichTSS(1) andTSS(2) are situated
[(a) and (c)]. Both surface states are easily identified as
bright lines clinging to the extended bulk features.

FIG. 4. Magnons at the (111) surface of a ferromagnetic pyrochlore. The surface spectral density is shown as color scale (black: zero;
white: maximum). Bulk magnons appear as broad features, surface states as sharp lines. (a) and (c) show constant-energy cuts through
the entire surface Brillouin zone for energies indicated by red lines in (b). (b) Spectral density along high-symmetry directions of the
surface Brillouin zone. The projection of the Weyl points and two topological surface states (TSS) are indicated. Parameters as for
Fig. 2(c), except D ¼ 0.5 meV.
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At ε ¼ 1.18 meV bulk states do not contribute to the
surface spectral density and only TSS(1) is visible [central
cut in (a)]. Apparently, TSS(1) forms a closed line when
considering the periodicity of the surface BZ.
Considering TSS(2), a similar scenario takes place at the

energy of the Weyl points [ε ¼ 2.67 meV, central cut of
(c)]. Instead of a closed line, we find a magnon arc that
connects the projections of the two Weyl points of opposite
topological charge. Thus, pyrochlore ferromagnets host the
magnon pendant to the Fermi arcs in electronic Weyl
semimetals.
The Weyl points and the associated magnon arcs can be

shifted—or tuned—by the magnetic field B. The energy of
the Weyl points is not affected by the rotation of B; hence,
all of the constant-energy contours discussed in what
follows are at the same energy (2.67 meV).
By rotating the field within the surface plane [Fig. 5(a)],

theWeyl points follow the magnetic field and can be rotated
arbitrarily. Consequently, the magnon arc trails the Weyl
point projections and is rotated likewise [(b)–(e)]. The arc is
not rotated rigidly: it shows the largest distances from Γ̄
along Γ̄ − M̄ as well as Γ̄ − M̄0 directions, irrespective of
the magnetic field’s azimuth. A sign change of eitherD or n
would change the signs of the Berry curvature and of the
topological charges; the magnon arc would be reflected
about the direction of the magnetic field.
Rotating the magnetic field from in-plane to out-of-plane

(bottom row in Fig. 5), the Weyl point projections are
shifted toward Γ̄, thereby reducing the length of the
magnon arc. The arc “collapses” when the magnetic field
points along the surface normal [Fig. 5(j)].
Experimental considerations.—The pyrochlore oxides

Lu2V2O7, In2Mn2O7, and Ho2V2O7, all of which exhibit
the magnon Hall effect [29], are the most promising
candidates for experimental detection of magnon Weyl
points. The first two are modeled very well by the
Hamiltonian in Eq. (1). For Lu2V2O7, the ratio D=JN of
DM interaction to exchange interaction has been

determined recently, with values of 0.32 [1], 0.18 [30],
0.07 [31], and 0.05 [32]. Since the DM interaction
determines the distance between the Weyl points and Γ
in reciprocal space, a search for Weyl points can help to
identify the exact ratio. The tunability of the Weyl points
and magnon arcs can be exploited, for example, in inelastic
neutron scattering experiments [30]: the shifts of the bulk
band crossings upon variation of the external magnetic field
can be traced. By probing a fixed line in reciprocal space
through the origin, say q, one will see a band gap closing
and reopening at one point on q upon evolution of the
field’s azimuth. The closing, i. e., the occurrence of Weyl
points, coincides with the alignment of the field and q.
Electron energy loss spectroscopy, which is sensitive to

the surface [33], could be applied for the detection of the
magnon arcs. Upon inversion of the magnetic field a
magnon arc is reflected, whereas the surface spectral
density of the bulk states is not. Hence, subtracting spectra
of oppositely magnetized samples yields clear evidence of
topological surface states.
Since the transverse thermal conductivities of Lu2V2O7

and In2Mn2O7 differ in sign [29], it is likely that their DM
constants D have opposite signs as well. Therefore, the
magnon arcs of the two systems should roughly be mirror
images for the same experimental setup.
Concerning transport experiments, signatures of the

Weyl points are difficult to identify because magnons
are bosons and all states contribute at elevated temper-
atures. On top of this, the Weyl points show up at a
common energy; therefore, their contributions cancel each
other in the integral of the transverse thermal conductivity
[3,4] because they carry opposite topological charges. A
mechanism which breaks the inversion symmetry allows
for Weyl points with different energies; in this case, they
would contribute to the transport.
Conclusion.—Ferromagnetic pyrochlores feature mag-

non Weyl points that can easily be tuned by an external
magnetic field. Thus, the class of topologically nontrivial
systems which comprises topological magnon insulators is
extended to, loosely speaking, “magnon Weyl semimetals.”
The latter consists of breathing pyrochlores with a non-
collinear ground state, reported in Ref. [14], and ferro-
magnetic pyrochlores that belong to a different symmetry
class, as predicted in this Letter. The effect of magnonWeyl
points on magnon transport of both spin and heat as well as
the formation of topological interface modes [28,34] and
the influence of magnon damping of topological states [35]
appear worth investigating in the future.
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