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The heavy fermion compound URu2Si2 continues to attract great interest due to the unidentified hidden
order it develops below 17.5 K. The unique Ising character of the spin fluctuations and low-temperature
quasiparticles is well established. We present detailed measurements of the angular anisotropy of the
nonlinear magnetization that reveal a cos4θ Ising anisotropy both at and above the ordering transition. With
Landau theory, we show this implies a strongly Ising character of the itinerant hidden order parameter.
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Despite intensive theoretical and experimental efforts,
the hidden order (HO) that develops below 17.5 K in the
heavy fermion superconductor URu2Si2 remains unidenti-
fied 30 years after its original discovery [1]. The nature of
the quasiparticle excitations and the broken symmetries
associated with the HO phase are important questions for
understanding not only HO but also the low-temperature
exotic superconductivity. While URu2Si2 is tetragonal
above the HO, torque magnetometry [2], cyclotron reso-
nance [3], x-ray diffraction [4], and elastoresistivity mea-
surements [5] indicate fourfold symmetry breaking in the
basal plane. However, NMR and nuclear quadrupole
resonance studies suggest that this nematic signal decreases
with increasing sample size and also depends on sample
quality, suggesting that the bulk is tetragonal [6,7].
A number of measurements on URu2Si2 indicate Ising

anisotropy, suggesting that it is essential to understanding its
HO.At theHO transition temperature Tc, both the linear (χ1)
and nonlinear (χ3) susceptibilities are anisotropic, with χ3
displaying a sharp anomaly, Δχ3 ¼ χ3ðT−

c Þ − χ3ðTþ
c Þ, that

tracks closelywith the structure of the specific heat [8,9]. The
non-spin-flip (ΔJz ¼ 0) magnetic excitations seen in both
inelastic neutron scattering [10] and inRamanmeasurements
[11,12] also have Ising character, despite the absence of local
moments at those temperatures and pressures. Finally,
quantum oscillations measured deep within the HO region
indicate a quasiparticle g factor with strong Ising anisotropy,
gðθÞ ∝ cos θ, where θ is the angle away from the c axis
[13,14]. This gðθÞ is confirmed by upper critical field
experiments [15] that indicate that Ising quasiparticles pair
to form a Pauli-limited superconductor. In this Letter, we
present a bulk thermodynamic measurement of the Ising

nature of the hidden order parameter, which shows that this
Ising anisotropy is present not only deep inside the HO but at
the transition itself; it is even present in the order parameter
fluctuations above Tc.
As a rank-4 tensor, the nonlinear susceptibility χ3abcd,

Ma ¼ χ1abHb þ 1

3!
χ3abcdHbHcHd; ð1Þ

is particularly well suited to probe symmetry-allowed
anisotropies in the tetragonal crystal environment (space
group I4=mmm) of URu2Si2; here, M and H refer to the
magnetization and the applied magnetic field, respectively,
and we use a summation convention for repeated indices. In
this Letter we present an angular survey of the HO
transition, reporting an extensive series of nonlinear sus-
ceptibility [χ3ðθ;ϕÞ] measurements. Our results have
important implications for the nature of the quasiparticles
in the HO phase, and we also use χ3ðθ;ϕÞ to probe the
angular anisotropy of short-range order parameter fluctua-
tions at temperatures above the HO transition.
The general expression for the field-dependent part of

the free energy in a tetragonal crystal at fixed temperature is

F ¼ −χ1ðθÞ
H2

2
− χ3ðθ;ϕÞ

H4

4!
; ð2Þ

with

χ1ðθÞ ¼ χa1 þ χb1cos
2θ and

χ3ðθ;ϕÞ ¼ χa3 þ χb3cos
2θ þ χc3cos

4θ þ χd3sin
4θsin22ϕ; ð3Þ
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where θ and ϕ refer to the angles away from the c axis and
in the basal plane, respectively; details of this angular
decomposition are in the Supplemental Material [16]. The
anomaly in Δχ3 is a known signature of HO [9]. Because
there is no Van Vleck contribution to the anomaly Δχ3, it is
a direct thermodynamic probe of the g factor at the HO
transition. A key question is whether the anisotropic g
factor found in quantum oscillations persists to higher
temperatures in the hidden order phase. Consistency with
the low-temperature gðθÞ ∝ cos θ results requires a large
change in χc3, Δχc3, and negligible Δχa3 and Δχb3 .
The URu2Si2 crystal used in this study is of dimension

4 × 2.5 × 2 mm3 and has been previously described [9,19].
A recent measurement of CðTÞ as well as the χ1 and χ3
measurements reported here show no change in these
properties over time [9]. The narrow width of the spe-
cific-heat transition, ΔTHO ¼ 0.35 K, is consistent with
high-quality samples of comparable dimensions [20–22].
Additionally, the single superconducting transition indi-
cates a single phase [19] confirming the high quality of the
sample. Measurements of the magnetization M were
performed in a commercial superconducting quantum
interference device (SQUID) magnetometer, as a function
of temperature (T), magnetic field (H), and angle (θ)
between the sample’s c axis and H. The variation in angle
was achieved with a set of sample mounts machined from
Stycast 1266 epoxy. The linear and leading nonlinear (χ3)
susceptibilities were determined as in Ref. [9]. Multiple
measurements [∼1800 MðHÞ scans] were performed with
sufficient resolution in H, T, and θ to resolve the angular
dependence of the χ3 discontinuity at Tc. Values for Δχ3
were obtained at every θ using a straight-line construction
assuming a mean-field jump at Tc.
Figure 1 shows χ1ðTÞ and χ3ðTÞ as a function of

temperature at θ ¼ 0° and 90°, data that agree well with
previous reports [9]. We note that the nonlinear

susceptibility displays a sharp anomaly at the HO tran-
sition, whereas χ1ðTÞ displays a corresponding disconti-
nuity in its gradient dχ1ðTÞ=dT; both χ and χ3 are
significantly larger for θ ¼ 0° (c axis) than for θ ¼ 90°
(ab plane).
In Fig. 2 we show the angular dependence of Δχ3 and of

χ1 just above the HO transition. The linear susceptibility
displayed in Fig. 2(b) is characterized by the form

χ1ðθ; TÞ ¼ χð0Þ1 þ χIsing1 ðTÞcos2θ; ð4Þ

where the isotropic component χð0Þ1 of the susceptibility
displays no discernable temperature dependence. The
temperature-dependent Ising component χIsing1 displays a
discontinuity dχIsing1 =dT at the HO transition. Whereas
χ1ðθÞ varies as cos2 θ at T ¼ 18 K, in Fig. 2(a) the sharp
jump in χ3 at the transition Δχ3 has a distinctive cos4 θ
dependence,

Δχ3ðθ;ϕÞ ¼ ΔχIsing3 cos4θ; ð5Þ

without any constant (Van Vleck) terms; this then indicates
that Δχc3 ≫ Δχb3 , Δχc3 in Eq. (4), consistent with the low-
temperature gðθÞ measurements. We note that, within
experimental resolution, no χd3 component was observed
in the measurements, either above or at the transition.
In Fig. 3 we compare the angular dependences of Δχ3

with χ3ð18 KÞ, χ3ð30 KÞ, and χ3ð100 KÞ, just above,
moderately above, and well above Tc. At 18 and 30 K,
χ3 follows cos4 θ, similar to Δχ3. At 100 K, the positive
contribution to χ3 associated with the HO transition has
completely vanished, leaving a negative response presum-
ably associated with single-ion dipolar physics; the signal is
too small to resolve the anisotropy. At T ¼ 18 K, χ3 is
about 1.6 times smaller than Δχ3, (cf. Fig. 1), and is well
described by the form

χ3ðθ; TÞ ¼ χð0Þ3 þ χIsing3 ðTÞcos4θ; ð6Þ

FIG. 1. Linear and nonlinear susceptibility versus temperature
for fields along the c axis (θ ¼ 0°) and in the basal plane
(θ ¼ 90°).

(a) (b)

FIG. 2. Angular dependence of (a) the jump Δχ3 in the
nonlinear susceptibility at the hidden order transition and
(b) the magnetic susceptibility just above the hidden order
transition at 18 K.
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where the isotropic component χð0Þ3 is essentially temper-
ature independent. A cos4 θ dependence in χ3ðTÞ is
still observed at 30 K, and by comparing the c-axis and
basal-plane measurements, we estimate that around 60 K,
χIsing3 ðTÞ goes to zero (see Fig. 1). Above 100 K, the cos4 θ
dependence is no longer discernable, leading us to infer that
the Ising component of the nonlinear susceptibility van-
ishes around 60 K.
At the HO transition, our results can be analyzed within a

minimal Landau free-energy density of the form

fðT;ψÞ ¼ a½T − TcðHÞ�ψ2 þ b
2
ψ4; ð7Þ

where we describe a domain of hidden order by a real order
parameter ψ and

TcðHÞ ¼ Tc −
1

2
QabHaHb þOðH4Þ ð8Þ

defines the leading field-dependent anisotropy in the
transition temperature, where Qab is a tensor capturing
how the order parameter ψ couples to magnetic field;
experimental consequences of Eq. (7) [9] are discussed in
the Supplemental Material [16]. The quantity Δχab ¼
−aQabψ

2 is the magnetic susceptibility associated with
the hidden order. By minimizing the free energy with
respect to ψ , the free energy below Tc is then
fðTÞ ¼ −ða2=2bÞ½TcðHÞ − T�2. The jump in the linear
and nonlinear susceptibilities are then given by

�
Δ
dχ1
dT

�
ab

¼ −
a2

b
Qab; ð9Þ

ðΔχ3Þabcd ¼
a2

b
ðQabQcd þQacQbd þQadQcbÞ: ð10Þ

In order to determine the robustness of the Ising
anisotropy, by setting Qxx ¼ Qyy ¼ ΦQzz, we codify our
results in terms of an angle-dependent coupling between
the hidden order parameter ψ and the magnetic field of the
form

Δf½ψ ; θ� ¼ −
aQzz

2
ψ2H2ðcos2θ þ Φsin2θÞ; ð11Þ

where Φ quantifies the fidelity of the Ising-like behavior, so
that Φ ¼ 0 and Φ ¼ 1 correspond to Ising and isotropic
behavior, respectively. The corresponding jump in the
nonlinear susceptibility at Tc is

Δχ3ðθÞ ∝ ðcos2 θ þ Φ sin2 θÞ2: ð12Þ

Our measurements indicate a very small Φ ¼ 0.036�
0.021, as shown in Fig. 4 (inset), where details of the
fitting procedure are given in the Supplemental Materials
[16]. Such a small value of Φ could be accounted for by an
angular offset of only 1°, via Eq. (12). X-ray diffraction
orientation measurements indicate an uncertainty in the c
axis of our sample of no more than �3°. In Fig. 4, one can
see that this value provides upper and lower bounds to the
cos4 θ dependence of Δχ3 that bracket the data symmet-
rically. Thus, a Φ value of 0.036 is well below the total
uncertainty of the measurement. To reduce the uncertainty
in Φ even further would require angular accuracy of well
below 1°, which is beyond the capability of the present
apparatus. Thus, the obtained Φ ¼ 0.036 is consistent also
with Φ ¼ 0.
We now discuss the implications of these results. At the

very simplest level, our results show that the free energy of
URu2Si2 only depends on the z component of the magnetic
field, i.e., F½ ~H� ¼ F½Hz�. In particular, (i) the coupling of

FIG. 3. Angular dependence of Δχ3 and χ3 at three different
temperatures, showing the disappearance of the Ising behavior at
high temperatures.

FIG. 4. Δχ3 as a function of cos4 θ, fit to Eq. (12) for different
values of Φ. Blue dashed lines indicate Φ values assuming an
angular offset of 3° (θ0 ¼ θ � 3°). Inset shows the effect of Φ on
the goodness of fit, expressed as the reduced χ2 [16].
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the order parameter to the magnetic field involves an Ising
coupling F½H;ψ � ¼ − 1

2
Qzzψ

2H2
z , and (ii) in the micro-

scopic Hamiltonian, the Zeeman coupling of the magnetic
field is strongly Ising, with the field coupling to the z
component of the total angular momentum −JzBz.
The second point follows because derivatives of the free

energy with respect to field are equivalent, inside the trace
of the partition function, to the magnetization operator,
−δ=δHz ≡ M̂z, so that if the free energy only depends on
Hz, the partition function Z ¼ Tre−βH and, hence, the
Hamiltonian only depends on M̂z ¼ gĴz.
However, these simple conclusions have implications for

the microscopic physics. On the one hand, we can link
the Ising anisotropy of the microscopic Hamiltonian to the
single-ion properties of the U ions in URu2Si2, where the
Zeeman coupling −gfμBJzBz is a sign of vanishing matrix
elements hþjJ�j−i ¼ 0. From a single-ion standpoint, an
almost perfect Ising anisotropy is a strong indication of an
integer spin 5f2U4þ ground state with J ¼ 4. High-spin
Ising configurations of the alternative 5f3U3þ ionic con-
figurations are ruled out because the coupling of the local
moment to the tetragonal environment mixes configura-
tions by adding angular momenta in units of �4ℏ, for
example, Jz ¼ �5=2 and∓ 3=2, leading almost inevitably
to a nonzero transverse Zeeman coupling when the angular
momentum J is half-integer. Although the precise crystal-
field configuration of the U ions is still uncertain [23–25],
both dynamical mean-field calculations [26] and high-
resolution RIXS measurements [24] confirm the predomi-
nantly 5f2 picture.
Yet a single-ion picture is not enough, for the sharpness

of the specific-heat anomaly, the sizable entropy, and the
gapping of two-thirds of the Fermi surface associated with
the hidden order transition [1] all suggest an underlying
itinerant ordering process. The remarkable feature of our
data is that the jump Δχ3 that reflects the itinerant ordering
process exhibits a strong Ising anisotropy. This result links
in with the observation of multiple spin zeros in de
Haas–van Alphen measurements, which detect the presence
of itinerant heavy quasiparticles with an Ising g factor,
gðθÞ ¼ gf cos θ, at low temperatures. Our new results
suggest that these same quasiparticles survive all the
way up to the hidden order transition. In the Landau
theory, we can identify the Ising-like coupling between
HO and the magnetic field in terms of the squared g
factor Qzzψ

2cos2θ ∝ gðθÞ2ψ2.
Reconciling the single-ion and itinerant perspectives,

both supported strongly by experiment, poses a fascinating
paradox. The simplest possibility is that the Ising
anisotropy of the f electrons is a one-electron effect
resulting from a renormalized, spin-orbit-coupled f band
that develops at temperatures well above the hidden order
transition. In this purely itinerant view, the hidden order is a
multipolar density wave that develops within a preformed

band of Ising quasiparticles [27,28]. Microscopically such
quasiparticles are renormalized one-particle f orbitals
formed from high-spin orbitals with half-integer jJzj.
Provided only one jJzj > 1=2 is involved, the transverse
matrix elements of the angular momentum operator
h�jJ�j�i ¼ 0 identically vanish, leading to a perfect
Ising anisotropy. Such Ising quasiparticles have been
observed in strong spin-orbit-coupled systems, but only
at high-symmetry points in the Brillouin zone [29].
Moreover, in a tetragonal environment, when an electron
resonantly scatters off an f state, Jz is only conserved mod
(4). Thus, a mobile heavy Bloch wave must actively
exchange�4ℏ units of angular momentum as it propagates
through the lattice, leading to Bloch states composed of a
mixture of Jz states, such as

jk�i ¼ αjk;�5=2i þ βjk;∓ 3=2i: ð13Þ

This inevitably gives rise to a finite transverse coupling and
a finite Φ in the phenomenological Landau theory
(Φ ∝ jαβj2) that is ruled out by these experiments.
An alternative is that the itinerant f quasiparticles carry

integer angular momentum, inheriting the Ising anisotropy
of a localized 5f2 local moment of the U atoms via a phase
transition rather than a crossover. In this scenario, even
though Jz is conserved mod(4), Ising anisotropy is pre-
served since the up-spin and down-spin configurations
differ by at least two units of angular momentum. However,
this picture requires that the half-integer conduction elec-
trons hybridize with the underlying integer f states, which
can only occur in the presence of a spinorial or “hastatic”
order parameter [30–33]. Indeed, the hastatic order scenario
predicted the Δχ3 ∝ cos4 θ observed in this experiment,
although theoretical efforts to develop a microscopic theory
of hastatic order predicted a small transverse moment that
has been shown to be absent in high-precision neutron
scattering experiments [34–36]. The vanishing of the
anisotropy constant (Φ ¼ 0) in our nonlinear susceptibility
measurements combined with the null result reported by
neutron scattering represents a fascinating challenge to our
future understanding of hidden order.
The continuation of the Ising anisotropy well above Tc is

also remarkable. While single-ion physics can give a
negative Ising anisotropic χ3, for an isolated Ising
ground-state doublet, or a positive, but more isotropic
χ3, if there are several singlets in the temperature range of
interest, there is no way to explain the positive Ising
anisotropic χ3 emerging below 60 K with single-ion
physics. Instead, this response indicates Ising anisotropic
order parameter fluctuations extending up to more than 3
times Tc, an extraordinarily large fluctuation regime.
An interesting question raised by our work is whether

bulk nonlinear susceptibility measurements can be used to
detect microscopic broken tetragonal symmetry that has
been reported in torque magnetometry measurements [2].
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In principle, were the hidden order to possess domains with
broken tetragonal symmetry, interdomain fluctuations in
the basal-plane susceptibility would manifest themselves
through a finite value of χd3 below Tc. The large Ising
anisotropy suppresses the precision for in-plane suscep-
tibility measurement: our current work places an upper
bound on the microscopic symmetry-breaking susceptibil-
ity jΔχxyj, such that jΔχxyj=χxx ≤ 1, which is 2 orders of
magnitude larger than that measured by torque magnetom-
etry on μm-size samples [2,16], and thus our negative
results are not inconsistent with their positive finding.
However, improvement in resolution in future measure-
ments could make it possible to address this issue.
In summary, we have presented a detailed survey of the

nonlinear magnetic susceptibility as a function of angle and
temperature in the hidden order compound URu2Si2. These
measurements showcase the unique Ising anisotropy, and
imply that it is a key feature of the hidden order parameter.
While previous quantum oscillation measurements indi-
cated the presence of Ising quasiparticles, this Ising
anisotropy persists not only to the transition temperature,
but all the way up to 60 K, putting serious constraints on the
theory of hidden order. It would be quite interesting to
examine the nonlinear susceptibility anisotropy in and
above the antiferromagnetic phase, which could be done
in URu2−xFexSi2 [37].
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