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We combine numerical diagonalization with semianalytical calculations to prove the existence of the
intermediate nonergodic but delocalized phase in the Anderson model on disordered hierarchical lattices.
We suggest a new generalized population dynamics that is able to detect the violation of ergodicity of the
delocalized states within the Abou-Chakra, Anderson, and Thouless recursive scheme. This result is
supplemented by statistics of random wave functions extracted from exact diagonalization of the Anderson
model on ensemble of disordered random regular graphs (RRG) of N sites with the connectivity K ¼ 2. By
extrapolation of the results of both approaches to N → ∞ we obtain the fractal dimensions D1ðWÞ and
D2ðWÞ as well as the population dynamics exponent DðWÞ with the accuracy sufficient to claim that
they are nontrivial in the broad interval of disorder strength WE < W < Wc. The thorough analysis of the
exact diagonalization results for RRG with N > 105 reveals a singularity in D1;2ðWÞ dependencies which
provides clear evidence for the first order transition between the two delocalized phases on RRG
at WE ≈ 10.0. We discuss the implications of these results for quantum and classical nonintegrable and
many-body systems.
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Introduction.—The concept of many-body localization
(MBL) [1] emerged as an attempt to extend the celebrated
ideas of Anderson localization (AL) [2] from one-particle
eigenstates formed by a static random potential to the
many-body eigenfunctions of macroscopic quantum sys-
tems. Later, the MBL in various models (XXZ spin chain
subject to a randommagnetic field [3,4], array of Josephson
junctions [5], etc.) became a subject of intensive theoretical
studies. The ideas of MBL appear naturally in discussions
of applicability of the conventional Boltzmann-Gibbs
statistical mechanics to isolated many-body systems.
This description based on the equipartition postulate should
not be valid for the localized many-body states. Moreover,
in Ref. [5] it was shown that the Boltzmann-Gibbs
description of the isolated Josephson arrays most likely
remains invalid even in the so-called “bad metal” phase
where the eigenstates are extended but not ergodic; e.g.,
they occupy a vanishing fraction of the Hilbert space.
Because of complexity and diversity of many-body

systems it is worthwhile to exploit the MBL-AL analogy
to demonstrate existence of the nonergodic extended states
first in models for single-particle localization. It is known
that such states do exist at the critical point of Anderson
transition (AT) [6]. However, in order to be relevant for
MBL they have to constitute a distinct phase, i.e., to exist in
a finite range of parameters, such as the disorder strength.
A natural candidate for a model where it can happen is
the disordered Bethe lattice (BL), where the number of

resonance sites increases exponentially with distance. This
increase can compensate for the exponential smallness of
the transition amplitude, thus leading to an extended critical
phase. There are reasons to believe [7] that the topology of
Hilbert space of a generic many-body system shares (to a
leading approximation) the basic properties of BL: (i) the
exponential growth of the number of sites N ¼ KR on the
radius of the tree R with the branching number K and
(ii) the absence of loops. The latter simplifies the problem
of AL as compared to AL in finite dimensions. In the
seminal paper [8] Abou-Chakra, Anderson, and Thouless
developed an analytical approach to the Anderson model
on an infinite BL that allowed them not only to demonstrate
the existence of the AL transition but also to evaluate the
critical disorder with a pretty good accuracy. More recently,
some mathematically rigorous results for AL on BL were
obtained [9,10].
The most interesting and the least studied aspect of AL

on the BL is the statistics of extended wave functions.
Recently it was suggested [11,12] that these statistics may
be multifractal, i.e., extended nonergodic. A similar con-
clusion was reached in early analytical work [13] and a
more recent numerical one [14] on “directed BL models.”
The contradiction with other results on the BL and sparse
random matrices [15], where only ergodic states were
found below AT, provoked a vigorous discussion [16–20].
Note that the mere formulation of statistics of normalized

extended wave functions in a closed system requires
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understanding of the thermodynamic limit of a finite-size
problem. For the BL this poses a major problem: a finite
fraction of sites belong to the boundary making the results
crucially dependent on the boundary conditions. A known
remedy [11,12] is to consider a random regular graph
(RRG) [21,22], where each of N sites is connected to a
fixed number (K þ 1) of other sites. Such a graph has a
local tree structure similar to a BL but no boundary.
In contrast to a BL, RRG has loops but the length of
the smallest statistically relevant ones is macroscopically
large ∼ lnN= lnK.
In this Letter we reformulate the approach of Ref. [8]

in a way that distinguishes extended nonergodic states
from ergodic ones. A new recursive algorithm [similar to
population dynamics (PD) [23]] of treatment, the Abou-
Chakra-Anderson-Thouless (ACAT) equations [8], enables
us to justify semianalytically the existence of the inter-
mediate extended nonergodic phase for a BL with K ¼ 2.
This result is relevant for a broad class of systems (e.g.,
Refs. [13,17]) described by self-consistent ACAT equa-
tions, where the loops are absent, or rare, or irrelevant [24].
Our extensive exact diagonalization numerics on the
Anderson model on RRG with N up to 128 000 brought
up a strong support for such a phase too. Moreover, we
discovered evidence for the first order transition between
ergodic (EES) and nonergodic states (NEES) within the
delocalized phase. Its position corresponds to the condition
for the Lyapunov exponent LðW;E¼ 0Þ¼ 1

2
lnK discussed

in Ref. [9]. The results are summarized in Fig. 1.
The model and fractal dimensions Dq.—Below we

analyze the properties of the eigenfunctions of the
Anderson model described by the Hamiltonian

Ĥ ¼
XN

i¼1

εijiihij þ
XN

i;j¼1

tijjiihjj: ð1Þ

Here εi are random on-site energies uniformly distributed
in the interval ½−W=2;þW=2�, the connectivity matrix tij
equals to 1 for nearest neighbors, and 0 otherwise.
Let jai and hijai be the normalized eigenstates and wave

function coefficients of Hamiltonian (1) in the site repre-
sentation. One can introduce themoments Iq ¼

P
ijhijaij2q,

which generically scale with the number of the lattice sites
N ≫ 1 as Iq ∝ N−τðqÞ. For localized states τðqÞ ¼ 0, while
the ergodicity implies τðqÞ ¼ q − 1.Multifractal nonergodic
states are characterized by the set of nontrivial fractal
dimensions 0<Dq¼τðqÞ=ðq−1Þ<1, e.g., D1¼ limq→1Dq

and D2 ¼ τð2Þ. Exact diagonalization of a large RRG
(see Fig. 1) suggests that the fractal dimensions experience
a jump from Dq < 1 for W > WE ≈ 10.0 to Dq ¼ 1 for
W < WE manifesting the first order ergodic transition.
Generalized recursive algorithm for ACAT equations.—

Following Ref. [8] we introduce a single-site Green

function, GðkÞ
i ðωÞ ¼ hijðω − ~HkÞ−1jii for a site i at a

generation k of the reduced Hamiltonian ~Hk, obtained
from Ĥ by disconnecting generations k and kþ 1. The
random Green functions are characterized by distribution

functions PkðGÞ. Individual GðkÞ
i obey the ACAT recursion

equation [8]

GðkÞ
i ¼ 1

ω − εi −
P

jðiÞG
ðk−1Þ
j ðωÞ

; ð2Þ

where jðiÞ are sites at the generation k − 1 connected to
site i. These equations are ill determined: the polelike
singularities in the right-hand sides have to be regularized.
This is usually achieved by adding an infinitesimal
imaginary part to ω → ωþ iη. The recursion Eq. (2)
might become unstable with respect to this addition.
This happens for W below the critical disorder of the
AL transitionWc and manifests the delocalized phase. For
W > Wc the solution PðGÞ ∝ δðImGÞ is stable. The two
types of behavior occur generically in a broad class of
Anderson models [2].
The spectrum of the Hamiltonian on a finite lattice is

given by a discrete set of energies Ea, corresponding to
states jai. Although the global density of states is a sum of
delta functions νðωÞ ¼ P

aδðω − EaÞ it always has a well-
defined thermodynamic limit: one introduces an infinitesi-
mal broadening of each delta function η, takes first the limit
of the infinite number of sites N → ∞, and afterwards

D2= - d <ln I2>/d lnN
W
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FIG. 1. Fractal dimensions D2 and D1 for K ¼ 2 RRG and the
population dynamics exponent D as functions of disorder
strength W. The W dependence of D extrapolated to N → ∞
is presented by the “brush-painted” blue line where the width
corresponds to the uncertainty of extrapolation. In spite of this
uncertainty, D is distinctly different from 0 and 1 in a broad
interval of W manifesting the nonergodic (multifractal) nature of
extended wave functions. The red solid line with black data points
is a “running” fractal dimension D2ðN;WÞ ¼ −dhln I2i=d lnN
obtained by exact diagonalization at the maximal size N ¼
128 000 of a disordered RRG. The fat red line is a sketch of
the fractal dimension D2ðN → ∞; WÞ≡D2ðWÞ extrapolated to
infinite N. Inset: the jump singularity in the running fractal
dimensions D1ðN ¼ 60 000; WÞ and D2ðN ¼ 128 000;WÞ man-
ifesting the ergodic transition at W ¼ WE ≈ 10.0.
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η → 0. As a result, νðωÞ tends to a smooth function. In
contrast, for the local density of states (LDOS) νiðωÞ ¼P

ajhijaij2δðω − EaÞ the result of this procedure is not
always a smooth function. Indeed, in the limit W → ∞
the on-site states jii are exact eigenstates and νiðωÞ ¼
δðω − εiÞ even for the infinite system. For finite but large
W, satellite δ-like peaks appear. The total number of the
peaks is infinite in the thermodynamic limit, but almost all
of them have exponentially small weight. Hence, the
effective number of peaks remains finite: it increases as
W is decreased and becomes infinite at W ¼ Wc. At this
point LDOS becomes smooth provided that the limit
N → ∞ is taken before η → 0. Note that the opposite
order of limits (η → 0 before N → ∞) always leads to
discrete peaks in LDOS.
At W < Wc LDOS contains an extensive number M of

peaks with significant weight: M → ∞ as N → ∞.
Generally, one expects M ∝ ND with some 0 < D ≤ 1.
For νiðωÞ to be smooth, the broadening η should exceed the
spacing between the peaks δM ∝ M−1 ∝ N−D. Thus, the
simultaneous limitN → ∞, η → 0,Nγη ¼ const results in a
smooth LDOS iff γ < D. Studying such generalized limits
yields information on the scaling of the number of peaks,
i.e., on the structure of the eigenfunctions. Wave functions
of ergodic states are uniformly spread on a lattice, so that
M ∝ N, i.e., D ¼ 1 and the LDOS is smooth for any γ < 1.
We show below that in a broad interval of disorder strengths
in the delocalized regime D ¼ DðWÞ < 1 and equals to the
critical value of γ corresponding to the transition between a
smooth and a singular LDOS, DðWÞ ¼ γcðWÞ.
For W < Wc (delocalized regime) and an infinitesimal

η > 0, ImG increases exponentially with the number of
recursion steps n in Eq. (2) describing an infinite tree:

ImG ∝ ηeΛn: ð3Þ

For a finite RRG of size N, n < lnN= lnK [21]. For
larger n the loops terminate the exponential growth of a
typical ImG limiting it by ImG ∝ ηNΛ= lnK. Thus, for
νiðωÞ ∼ N−DP

aη=½ðω − EaÞ2 þ η2� ≈ R
dEaη=½E2

a þ η2�
to be smooth (and ImG ∼ 1 independent of η) η should
scale as η ∝ N−Λ= lnK , i.e.,

DðWÞ ¼ ΛðWÞ= lnK: ð4Þ

Ideally, one would deal with infinitely small η → 0 in
order to determine the exponent Λ. However, the limited
precision of any numerical computation makes it impos-
sible in practice: for any realistic initial ImG ≠ 0, the value
of ImG becomes significant after few recursions. To avoid
this problem we included an additional step to the recursion
Eq. (2):

ImGðkÞ
i → e−ΛkImGðkÞ

i ; ð5Þ

so we keep the typical imaginary part fixed and k

independent: exphln ImGðkÞ
i ik ¼ δ (where h� � �ik denotes

averaging over all sites i in the kth generation). As soon as
the stationary distribution of G is reached in this recursive
procedure, Λk → Λ.
To realize this algorithm we adopted a modified pop-

ulation dynamics (PD) method [23]. In each step we used
the set of Np Green functions GðkÞ

i (population) obtained at
the previous step and new on-site energies εi to generateNp

new Green functions Gðkþ1Þ
i according to Eq. (2), in which

each site is connected to K randomly chosen sites of the
previous population set.
In order to obtain DðWÞ one needs to take the limits

Np → ∞, δ → 0 of DðNp; δ;WÞ. The convergence turns
out to be slow (logarithmic), resulting in a considerable
uncertainty in DðWÞ. Luckily, DðNp; δ;WÞ depends only
on the combined variable X ¼ −1= lnðN−1

p þ aδbÞ, with a,
b ∼ 1, rather than on lnNp and ln δ separately.
Extrapolation of DðW;XÞ to X ¼ 0 yields DðWÞ shown
in Fig. 2. The lower inset of Fig. 2 shows the collapse of the
data for several N and δ from the intervals 103 < N < 108

and 10−3 < δ < 10−17. Since b ≈ 0.5, one needs excep-
tionally small δ to reach small X. This required computa-
tion with higher than usual precision.
Note that the exponent Λ is a property of an infinite BL,

N ¼ ∞. Therefore, Λ is free of the finite-size effects which
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FIG. 2. The population dynamic exponent DðWÞ (blue points
with gray error bars) extrapolated toN ¼ ∞ and δ ¼ 0 forK ¼ 2.
The condition DðWcÞ ¼ 0 yields Wc ¼ 18.4þ0.4

−0.2 . In a broad
interval of W < Wc we obtained DðWÞ distinctly different from
the ergodic limit DðWÞ ¼ 1. Lower inset: The collapse of
data for a fixed W and different Np, δ to a function DðW;XÞ
of X ¼ −1= lnðN−1

p þ aδbÞ. Extrapolation to X ¼ 0 gives the
population dynamic exponent DðWÞ. The delocalized phase
corresponds to 1 ≥ DðWÞ > 0, whereas in the localized phase
DðWÞ < 0. Upper inset: the finite-size critical disorder WcðXÞ
defined asD½WcðXÞ; X� ¼ 0 and its extrapolation to X ¼ 0 by the
power-law fit WcðXÞ ¼ Wc − aX1=ν with Wc ¼ 18.4, ν ¼ 0.56
(blue), and Wc ¼ 19.0, ν ¼ 0.7 (red). Without extrapolation
the value of Wc at maximal population size N�

p ∼ 108 is
WcðN�

pÞ ≈ 17.5.
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dominate the moments IqðNÞ at N<Nc, where the corre-
lation volume Nc ∼ exp½1=ΛðWÞ� diverges at W → Wc.
The uncertainty of extrapolation of Λ to Np → ∞ and
δ → 0 turns out to be small enough not to raise doubts
that 0 < D < 1 at least in the interval 10 < W < 18 for
K ¼ 2. Additional support of existence of the phase with
0 < D < 1 comes from the analytical solution to Eq. (2)
in the large-K limit [24]. It turns out that in this limit
DðWÞ ¼ 0 and DðWÞ ¼ 1 correspond to the special values
of the Lyapunov exponent L ¼ lnK and L ¼ 1

2
lnK dis-

cussed in Ref. [9].
Exact diagonalization on RRG.—While the ACAT

approach is commonly believed to describe well the
localized phase of RRG, its applicability in the delocalized
regime requires further investigation. We performed a
direct study of the Anderson model on RRG by exact
diagonalization at the system sizes N up to 128 000 in
the range of disorder strength 7.5 < W < 20 [25]. The
main focus was on calculating the inverse participation
ratio I2 ¼

P
ijhijaij4 and the Shannon entropy S ¼

−
P

ijhijaij2 lnðjhijaij2Þ for the eigenstates jai with

energies Ea near the band center. The expected asymptotic
behavior of the typical averages at N → ∞ is [12]

hln I2i ¼ −D2 lnN þ c2; hln Si ¼ D1 lnN þ c1; ð6Þ

where h� � �i are the averages both over the ensemble of
RRG with fixed connectivity K ¼ 2 and over random
on-site energies εi, D1;2 are the multifractal dimensions,
and c1;2 ∼ 1. The derivativesD2ðN;WÞ ¼ −dhln I2i=d lnN
and D1ðN;WÞ ¼ dhln Si=d lnN should saturate at D2 and
D1, respectively, in the limit N → ∞.
We present the results for D2ðN;WÞ deep in the

delocalized phase (Fig. 3) and close to the localization
transition (Fig. 4). Note two important features on these
plots: (i) an abrupt change of behavior forW close to 10 and
(ii) a minimum in the N dependence of D2ðN;WÞ (recently
reported in Ref. [19]) in the vicinity of AL transition:
as W → Wc − 0, D2ðNmin;WÞ at the minimum and
1= lnNmin vanish. Extrapolation of D2ðNmin;WÞ leads to
Wc ¼ 18.1� 0.5 (see inset to Fig. 4) in agreement with PD
results, Fig. 2.
A striking result of the exact diagonalization is the

existence of a jump in both D2ðN;WÞ and D1ðN;WÞ
shown in Fig. 1. A feature, which is almost invisible at
small N, evolves to a more and more abrupt jump as N
increases above 60 000 (see Fig. 3, right panel).
Extrapolation of D2ðN;WÞ to N → ∞ for W < 10.0 gives
D2 ¼ D2ðN → ∞;WÞ ¼ 1, whereas D2ðW ¼ 10.0Þ ¼
0.86� 0.02 [25]. We conclude that on RRG at W ¼ WE ≈
10.0 [26] there is a first-order transition from the non-
ergodic delocalized phase at W > WE to the ergodic one
at W < WE.
Conclusion.—The existence of the nonergodic phase of

the BL Anderson model together with the similarity of this
model with generic many-body ones gives basis for far-
reaching speculations. The point is that in contrast to the
conventional Anderson localization, which is the property
of any wave dynamics, the MBL is a genuine quantum
phenomenon. Indeed, in the classical limit, a weakly
perturbed integrable system with d > 2 degrees of freedom

D2(N) = -d<lnI2>/d lnN

lnN
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FIG. 3. Left panel: D2ðN;WÞ deep in the delocalized phase. The curves tend to converge to two different values of D2 for
W ¼ WE þ 0 and WE − 0, where WE ≈ 10.0. Right panel: Formation of a jump in D2ðWÞ.
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FIG. 4. D2ðN;WÞ close to the localization transition at
W ¼ Wc. The N dependence shows minima (red spot) for
W < Wc at Nmin → ∞ as W → Wc [19]. Inset: D2ðNmin; WÞ
as a function of W. Extrapolation by a second-order polynomial
gives Wc ¼ 18.1� 0.5.
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always demonstrates some diffusion in the phase space
known as Arnold diffusion [27]. Although the celebrated
Kolmogorov Arnold Moser theorem [28] guarantees the
survival of the vast majority of the invariant tori, the chaotic
part of the phase space is connected (unless d ¼ 2), thus
allowing the diffusion for arbitrary weak perturbation.
Therefore, one should not expect MBL in the classical
limit. On the other hand, the glassy states of matter without
doubt exist for any ℏ including ℏ ¼ 0 and are obviously not
ergodic. It is safe to assume that the extended nonergodic
phase of the MBL models is not qualitatively different from
a classical glassy state [29]. Therefore, our arguments in
favor of the existence of the delocalized nonergodic phase
of the BL Anderson model and the true phase transition
between the ergodic and nonergodic states can be consid-
ered as arguments in favor of glassy states being distinct
states of matter and their transition to fluids being a true
phase transition.
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