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We demonstrate, through three-dimensional discrete dislocation dynamics simulations, that the complex
dynamical response of nano- and microcrystals to external constraints can be tuned. Under load rate
control, strain bursts are shown to exhibit scale-free avalanche statistics, similar to critical phenomena in
many physical systems. For the other extreme of displacement rate control, strain burst response transitions
to quasiperiodic oscillations, similar to stick-slip earthquakes. External load mode control is shown to
enable a qualitative transition in the complex collective dynamics of dislocations from self-organized
criticality to quasiperiodic oscillations.

DOI: 10.1103/PhysRevLett.117.155502

Power-law scaling of avalanche phenomena is widely
observed in many nonequilibrium natural systems.
Examples are found in geologic earthquakes, snow ava-
lanches, sandpile slides, and strain bursts during plastic
flow [1,2]. The realization that such vastly diverse
physical systems display common features implies scale
invariance and compels a search into universal funda-
mental laws. The common scaling raises the possibility
that the intricate system behavior can be described by
simple local rules, despite the complexity of the under-
lying internal dynamics. One concept that is widely used
to interpret this universality is self-organized criticality
(SOC) [3]. In a SOC system, the dynamics has an attractor
characterized by infinite correlation time and length,
hence displaying scale-free scaling. A key hypothesis
behind this abstraction is that the driving force varying
rate is much slower than the internal relaxation rate [3,4]
of a system undergoing SOC. Nevertheless, since this
condition may not always hold, one wonders whether the
qualitative aspects of a system’s dynamical behavior
change when the driving force changing rate is compa-
rable to its internal relaxation rate. Our objective here is to
investigate the relationship between the external driving
force and relaxation dynamics associated with strain
bursts during the nano- and microscale plastic deforma-
tion of crystals.
At the smallest of physical scales (e.g., nano- to micro-

scale), the release of plastic strain by intermittent “bursts”
has been found to belong to this power-law scaling
behavior [2,5–8]. One additionally unique aspect of plas-
ticity is that the driving force varying rate can be exper-
imentally tailored. Considering a simple but illustrative
case, a pillar is subjected to uniaxial compression in Fig. 1.
The force actuator, typically a voice coil, can exert an open-
loop stress rate _σ0 and/or be controlled to impose a strain
rate _ε0. For a proportional controller with the stiffness Kp,
the internal stress rate in the pillar is [9]

_σ ¼ αE
1þ α

ð_ε0 − _εpÞ þ _σ0
1þ α

; ð1Þ

where α ¼ Kp=K is the relative stiffness ratio, K ¼ EA=H
is the pillar stiffness, E, A, and H are the Young module,
the cross section area, and the height of the pillar,
respectively. _εp is the plastic strain rate resulting from
all internal dislocation dynamical activities. Once the
stiffness ratio α is infinitely large—or _σ0 and _ε0 are very
low— _σ becomes very sensitive to _εp, implying that the
driving force changing rate ( _σ) is dominated by and
comparable to its internal relaxation rate (_εp). This
indicates that the corresponding slip statistics are expected
to violate SOC.
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FIG. 1. Simplified sketch of pillar compression. (a) Experimen-
tal setup with an open-loop (directly applying a force F0) and a
closed-loop control (to realize displacement control). (b) Simu-
lation setup, a proportional dominated closed-loop control is
considered here with Ff ¼ KpðU0 − UÞ, which is simplified as a
spring with a finite machine stiffness Kp. The external stress rate
_σ0 ¼ _F0=A, the target strain rate _ε0 ¼ _U0=H, and the actual strain
rate _ε ¼ _U=H, where A and H are the cross section area and the
height of the pillar, respectively. One typical dislocation con-
figuration in a pillar with d ¼ 3000b is shown as an example.
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However, it is generally believed that the machine
stiffness Kp only contributes to the cutoff of the power-
law scaling [6,8,15]. The present investigation demon-
strates that, if the machine stiffness is extremely high,
dislocation avalanche dynamics (and hence strain bursts)
undergo a transition from scale-free critical behavior to
quasiperiodic oscillations. Interestingly, this is consistent
with recent findings on the role of very slow loading rates (a
low _σ0 and _ε0) [16,17], as suggested by Eq. (1). The
underlying microstructure mechanism for this dynamical
regime transition is disclosed. Considering that the dynami-
cal behaviors under soft and hard machine stiffness con-
ditions are vastly different, the corresponding intermittent
plasticities will henceforth be described as avalanche and
burst, respectively. Moreover, a dislocation-based branch-
ing model is proposed, giving a clear and precise physical
picture of the avalanche dynamical behavior.
The vast majority of existing submicron mechanical

testing experiments can only cover a narrow range of
machine stiffness. In addition, the time necessary for
dislocations to travel through a 1 μm sample is estimated
to be about 1 ns [18]. In state-of-the-art experiments, the
feedback loop frequency is ≈78 kHz (with a time constant
≈13 μs) [8], which means that the current experimental
controller response rate is much slower than the sample
plastic relaxation rate by 4 orders of magnitude. Namely,
the driving force changing rate is much slower than the
internal relaxation rate. Therefore, most previous exper-
imental conditions correspond to the regime where SOC
is observed. Discrete dislocation dynamics (DDD) studies,
as a computer simulation tool, make it possible to supple-
ment experimental testing and explore regimes that are
currently difficult to access experimentally [6,19]. The
current research presents the first systematic 3D-DDD
investigation on the slip statistics at the submicron scale,
accounting for the effects of the interaction of an external
loading mode [20–22]. Compared to most of the existing
two-dimensional (2D) DDD studies [2,23], the key
approximations inherent in 2D techniques are resolved.
Specifically, dislocation junction formation and destruc-
tion and the occurrence of cross slip are all accounted for
with minimal ad hoc assumptions.
The simulation setup is schematically shown in Fig. 1(b).

We conducted simulations of compression tests on Cu
pillars of different diameters, ranging from 1000b to 3000b
(≈300 nm − 1 μm), where b is the Burgers vector magni-
tude. The aspect ratio, H=d, is 3. Two extreme machine
stiffness cases are first considered, corresponding to pure
strain control (α ¼ þ∞) and pure stress control (α ¼ 0).
Here, under pure strain control, the applied strain rate is
_ε0 ¼ 960 s−1. Correspondingly, under pure stress control,
the actual loading rate _σ0 is E_ε0. We carry out 50 and 20
separate simulations with different initial dislocation con-
figurations under each loading mode, for d ¼ 1000b and
d ¼ 3000b, respectively.

Figure 2(a) presents the results of statistical analysis of
the burst displacement magnitudeΔU. To obtain maximum
resolution of the limited simulation data set, the comple-
mentary cumulative distribution function (CCDF) is used.
Figure 2(a) clearly illustrates that ΔU, under pure stress
control, exhibits a well-defined power-law distribution
spanning several orders of magnitude. The power-law
exponent for the corresponding probability density is found
to be 1.5, agreeing well with the generally accepted range
of 1.35–1.67 [5,6,24–26]. In addition, the power-law
distribution is consistent across system size, implying
the existence of scale-free universality. In contrast, the
CCDF of ΔU under pure strain control seems not to exhibit
power-law scaling behavior for both small and large system
sizes. Meanwhile, most of the data concentrate within one
order of magnitude. An analogous breakdown of the
power-law scaling under pure strain control is also
observed for the statistics of the burst duration [9].
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FIG. 2. (a) Statistical properties of burst displacement under
pure strain and stress control modes for pillar with diameters
d ¼ 1000b and 3000b. (b),(c) Typical evolution of plastic strain
rate and its averaged value in 0.24 μs windows, showing
(b) quasiperiodic strain bursts under pure strain control, and
(c) a depinning transition dislocation avalanche under pure stress
control.
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Then, how do we describe the strain burst statistics under
pure strain control? When discussing the temporal statistics
of earthquakes, distinct dynamical behaviors are distin-
guished by the coefficient of variation C ¼ sx=x̄ [27],
where sx and x̄ are the standard deviation and the mean
value, respectively. For the cases of C > 1 and C < 1, the
distribution is referred to as “clustered” and “quasiperi-
odic,” respectively; otherwise, if C ¼ 1, it is a random
Poisson distribution [27]. Taking the results of ΔU here, C
is calculated as 1.9 and 0.9 under pure stress and pure strain
control, respectively. This suggests that the dynamical
behaviors under pure strain control become quasiperiodic.
Similar to previous studies [16,27], quasiperiodicity here is
found to be stochastic due to the intrinsic scatter induced by
random cross slip or different dislocation configurations.
Quasiperiodic strain bursts under pure strain control are
manifested through the smoothed plastic strain rate, as
clearly shown in Fig. 2(b). Here, the time series of _εp is
smoothed over a fixed time window of 0.24 μs. For
comparison, the smoothed plastic strain rate under pure
stress control, also shown in Fig. 2(c), corresponds to a
depinning phase transition.
Close examination of dislocation configuration evolution

reveals that the mechanisms that control avalanche versus
quasiperiodic burst behavior are significantly different, and
they are highly dependent on the external constraint. First,
let us consider pure strain control. In the submicron regime
(e.g., d ¼ 1000b), each strain burst is found to be domi-
nated by sequential activation and deactivation of single
arm dislocation sources. Once a source is activated, the
accompanying plastic strain leads to a decrease in the stress
level [see Eq. (1), α ¼ þ∞]. Even if a weaker source is
formed during one burst event, sometimes it also cannot
operate due to the lower prevailing stress after relaxation.
This makes it difficult to trigger the simultaneous operation
of multiple dislocation sources [see Fig. 3(b)], especially
for small samples with limited volume. We have recently
shown that dislocation sources themselves are transient
because they generally result from the formation of dipolar
loops by cross slip [7]. This rapid stress drop prevents the
strain burst from continuously growing into a full-fledged
avalanche. Consequently, large-scale cooperative inter-
actions between dislocations that can lead to SOC cannot
be realized under pure strain control. Note that this
discussion applies to a sample size ranging from several
nanometers to about 1 μm. For smaller pillars, surface
nucleation of dislocations becomes dominant [28], and the
rapid stress drop may inhibit correlated surface nucleation,
while, for larger pillar size, Taylor-type interaction mech-
anisms prevail [29,30], and the rapid stress drop may
suppress cooperative dislocation interactions.
By contrast, a dislocation avalanche under pure stress

control is clearly associated with the correlated dislocation
motion. According to Eq. (1), when α ¼ 0, the stress rate
cannot sense the internal dislocation activity. Thus, the

stress level keeps almost constant during each avalanche
event [see Fig. 3(a)]. If one activated source leads to the
formation of a weaker one, the weaker source can be
immediately activated. Thus, distinctly different from the
strain control case discussed above, multiple sources can
operate in a correlated fashion [see Fig. 3(d)]. All
correlated sources contribute then to an increasing mag-
nitude of the strain burst, turning it into an avalanche. Such
highly correlated dynamical behavior suggests a close-to-
criticality nonequilibrium state [3].
Since it is difficult to experimentally achieve such

extreme machine stiffness, it is then interesting to examine
dislocation dynamics with finite machine stiffness. All of
the results in Fig. 3(a) correspond to the same size and
initial dislocation configuration. The calculated stress-
strain curve with finite machine stiffness (α ¼ 0.5,
_σ0 ¼ 0) in Fig. 3(a) displays a very similar behavior to
past experimental results [8,26], and it exhibits a serrated
yield character with longer decaying stages compared to
pure strain control. The observation of simultaneous
operation of multiple sources in Fig. 3(c) suggests that a
finite machine stiffness actually promotes correlated dis-
location motion, compared to pure strain control.
To further elucidate the statistical difference between

avalanche versus quasiperiodic dynamics, a simple
dislocation-based branching model is proposed. It is
inspired by the present 3D-DDD simulations and motivated
by Zapperi’s sandpile branching model [31], in which we
translate the branching idea into dislocation language. The
discrete plastic deformation is assumed to mainly proceed
through the intermittent activation of dislocation sources
[32,33]. One activated source may lead to the stochastic
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FIG. 3. Typical simulation results under different loading
modes for a pillar with d ¼ 1000b. (a) Stress-strain curves.
(b)–(d) Snapshots of dislocation configurations (from the top
view) at a strain value of 0.4%. Arrows indicate the bowing out
directions of activated sources.
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generation or activation of other sources, similar to the
branching process shown in Fig. 4(a).
The detailed algorithm proceeds as follows. Assuming a

pillar initially with ns dislocation sources, we can randomly
give each source a specific length λ according to a given
source length probability distribution. The fate of each
source (active or not) is determined by checking to see
whether the instantaneous applied stress σk can reach the
source operation stress,

σkM ≥ τ0 þ α1μb
ffiffiffi

ρ
p þ α2μb=λ; ð2Þ

where M is the Schmid factor, the three terms on the
right-hand side are the lattice friction stress, the elastic
interaction stress described by the Taylor relation, and the
source strength, respectively. α1 and α2 are dimensionless
constants, set to 0.5 and 1 [33], respectively. ρ is the
instantaneous dislocation density, estimated by dividing the
total source length by the pillar volume.
Once the weakest source is activated during deformation,

a strain burst begins [33,34]. After each source is activated,
the burst strain Sk increases by a specific value dεp.
Considering that _εp is much higher than the applied strain
rate _ε0 during a strain burst, according to Eq. (1), σk drops
by Edεpα=ðαþ 1Þ, and the total strain increases by
dεp=ðαþ 1Þ. It is assumed that the activated source is
broken (ceases to operate) after it sweeps the entire slip
plane once. However, this can randomly trigger the gen-
eration of additional na sources. If the newly generated
source can be activated according to Eq. (2), it triggers a
subsequent generation of na sources. Otherwise, the new
source is stored for possible dislocation generation, which
may activate during subsequent deformation stages. This
branching source generation process repeats itself until all
dislocation sources cannot be activated under the combined
effect of the instantaneous applied stress and the resistance
stress, given by the right side of Eq. (2) [see Fig. 4(a)]. At
that instance, this strain burst event stops and the stress
continues to increase till it triggers another strain burst
event.
In the following, we investigate the slip statistics

using this abstract branching model and compare it to
the more fundamental DDD simulations discussed above.
Compression tests are also modeled for Cu pillars with
diameters d ¼ 1000b and 3000b. Similar to the DDD
simulations, surface nucleation is not considered. If the
stress is higher than the surface nucleation stress (about
1.2 GPa for Cu [35]) or if the strain is higher than 0.5,
events are not recorded. If there is only one activated
source, each burst strain corresponds to the generated
plastic strain when the dislocation sweeps the entire slip
plane once. Therefore, dεp is set to bM=H= cos β [33],
where β is the angle between the normal direction of the
slip plane and the loading orientation. Through examina-
tion of the dislocation configuration evolution, na is taken

as the nearest integer of 2 rand, where rand represents a
random value from 0 to 1. Accordingly, the probabilities of
na being 0, 1, and 2 are 25%, 50%, and 25%, respectively.
This is different from a previous sandpile branching model
[31], where the new activated site number was taken as a
constant value of 2. na ¼ 0 means that the source is
destroyed after operation once, na ¼ 1, 2 indicate that
other sources are generated due to interactions with other
dislocations, cross slip, forming superjogs, or forming
dipolar loops [7]. Note that more deactivated sources
may be left in the sample if na ¼ 2, leading to a slight
increase in the dislocation density ρ after each branching
process. This results in an increase in the elastic interaction
resistance stress. Similar to 2D-DDD simulations [36], the
source length is assumed to follow a Gaussian distribution,
with a mean value λ̄ ¼ d=2, determined according to the
yield stress of our DDD results. Its standard deviation is set
to 20%λ̄, so that the predicted activated source number for
each strain burst event is statistically equivalent to those
obtained by our DDD results under pure strain control
[see Fig. 4(c)].
Figure 4(b) presents predicted typical stress-strain curves

under different loading modes, which agree well with our
simulation results in Fig. 3(a), including the stress level and
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the stepped or serrated burst features. In addition, the power-
law scaling of burst displacement ΔU is also well repro-
duced under pure stress control for different pillar sizes in
Fig. 4(e). The power-law exponent of the probability
distribution of ΔU agrees with that obtained by the present
3D-DDD. Figure 4(d) clearly indicates that, as the machine
stiffness increases, the power-law tails gradually become too
wide to recognize proper scale-free power-law statistics.
The excellent agreement between the abstract branching

model prediction and the fundamental 3D-DDD simula-
tions further verify that hard machine stiffness leads to a
deviation from scale-free SOC because the rapid stress
relaxation disturbs correlated dislocation motion. The
current finding offers a new pathway towards controlling
the correlated extent of dislocation dynamics and the
intermittent statistics by tuning the machine stiffness. It
opens up new possibilities for novel experiments with a
faster response rate that can reveal the quasiperiodic
oscillation dynamics of dislocation systems. The impor-
tance of often-neglected interaction with the external
loading system on intermittent plastic flow has been
demonstrated. The complex dynamics of collective dis-
locations producing strain bursts is shown to be controlled
through a simple tuning of the relative value of the driving
force rate to the internal relaxation rate.
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