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This paper presents the first experimental confirmation of a new theory predicting enhanced drag due to
long-range collisions in a magnetized plasma. The experiments measure damping of Langmuir waves in a
multispecies pure ion plasma, which is dominated by interspecies collisional drag in certain regimes. The
measured damping rates in these regimes exceed classical predictions of collisional drag damping by as
much as an order of magnitude, but agree with the new theory.
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Collision rates are fundamental to our understanding of
transport phenomena in plasmas. In magnetized plasmas,
the classical theory of collisions [1–3] has long been used
to describe these phenomena. However, when the cyclotron
radius rc ≡ qsB=Msc is less than the Debye length
λD ≡ ðT=4πn0q2sÞ1=2, it is known that classical theory is
incomplete, since this theory neglects long-range collisions
with impact parameters ρ in the range rc < ρ < λD for
which no parallel-perpendicular velocity scattering occurs.
Here, B represents the magnetic field strength, qs and Ms
are the species charge and mass, n0 is the plasma density,
and T is the plasma temperature in units of energy. Previous
experiments and theory have shown that these long-range
collisions enhance cross-field diffusion [4,5], heat transport
[6,7], and viscosity [8,9] by orders of magnitude over
classical theory when λD > rc. The effect of long-range
collisions on frictional drag was also considered theoreti-
cally using Fokker-Planck theory [10] and a Boltzmann
analysis [11], but these theories are inconsistent, and in any
case have never been tested.
A new theory [12] of long-range collisions resolves the

inconsistencies, and predicts strongly enhanced parallel
drag in magnetized plasmas for which λD > rc. A new
fundamental length scale d≡ bðv2=b2ν2ss0 Þ1=5 ∝ T1=5 is
identified in this theory, where b ¼ q2s=T is the distance
of closest approach, v is the thermal velocity, and νss0 is the
collision rate. This new length scale d separates long-range
collisions into two regimes: (1) ρ < d where the colliding
particles can be treated as a correlated sequence of two-
body, pointlike, energy and momentum-conserving
“Boltzmann” collisions and (2) ρ > d where multiple weak
collisions occur simultaneously and Fokker-Planck analy-
sis is valid. The long-range collisional enhancement of
parallel drag applies to Penning trap plasmas for both
matter and antimatter [13–15], for some astrophysical
plasmas [16], and even for the edge region of tokamak
plasmas [17–19].
Here we present the first experimental confirmation of

this enhanced collisional drag, obtained through measure-
ments of the damping of Langmuir waves in a multispecies

ion plasma. Collisional drag damping theory predicts
damping proportional to the collisional interspecies parallel
drag force. The measured damping rates are in quantitative
agreement with the theory only when long-range collisions
are included, since the enhanced parallel slowing rates
exceed classical slowing rates from short-range collisions
(with ρ < rc) by as much as an order of magnitude.
These damping measurements extend over a range of two

decades in temperature where collisional drag damping is
dominant. In this temperature range, the damping is depen-
dent on the plasma composition and scales roughly as T−3=2.
At higher temperatures, Landau damping dominates, and at
lower temperatures centrifugal mass separation [20–23] and
collisional locking of the fluid elements becomes significant.
At ultralow temperatures, the plasma approaches the mod-
erately coupled regime, and these damping measurements
may provide insight into the collisionality of a correlated,
magnetized plasma.
A cylindrical Penning-Malmberg trap is used to confine

these multispecies ion plasmas [24], with Bz ¼ 3 Tesla. The
ions are predominately Mgþ from a Magnesium vacuum
electrode arc,with 5%–30% impurity ions, consistingmostly
of H3Oþ, from chemical reactions with the background gas.
The impurity ion fraction is varied by changing the back-
ground gas pressure over the range 10−10 ≤ P ≤ 10−8 Torr.
A quantitative determination of the species fraction δs

and mass Ms for each species s is obtained by measuring
the resulting heating from short, resonant cyclotron bursts
(200-800 cycles) [23]. The charge fractions are measured to
a 10% accuracy down to a δs ∼ 0.5% level. A typical
“dirty” plasma composition consists of the three naturally
occurring Magnesium isotopes (24, 25, and 26), H3Oþ

(19), HCOþ (29), Oþ
2 (32), C3H

þ
3 (39), and C3H

þ
7 (43),

with δs ∼ ð52; 9; 10; 16; 4; 4; 4; 1Þ%, respectively.
By using a weak applied “rotating wall” (RW) field [25],

these cylindrical ion plasmas are confined for days in a near
thermal equilibrium state described by “top-hat” density
and rigid-rotor rotation profiles. Radial profiles of the
total Mgþ density, rotation velocity, and plasma temper-
ature are measured through laser induced fluorescence
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(LIF) techniques [24]. A typical plasma has a radius
Rp ∼ 0.5 cm, density n0 ∼ 1.9 × 107 cm−3, length
Lp ∼ 10 cm, and rotates at fE ∼ 9 kHz. Altering the
frequency of the RW enables control of the rotation rate
fE ¼ ð4 → 31Þ kHz and thus the plasma density n0 ¼
ð0.9 → 6.4Þ × 107 cm−3.
The plasma temperature T is controlled from 10−4 to

1 eV through laser cooling of the 24Mgþ ions. This enables
damping measurements spanning regimes from collision-
less Landau damping to collisional drag damping. For
plasmas at T ≳ 10−3 eV (11.6 Kelvin), the ions species are
uniformly mixed. In contrast, at T < 10−3 eV, the species
begin to centrifugally separate by mass [20–23], with near-
complete separation at T < 10−4 eV.
The damping measurements are performed on azimu-

thally symmetric, standing plasma (Langmuir) waves.
In these radially bounded plasmas, the wave frequencies
are near-acoustic, because of the shielding of the cylindrical
confinement electrodes at a radius Rw ¼ 2.86 cm. This
Trivelpiece-Gould (TG) dispersion relation [26] for azi-
muthally symmetric modes is approximately

fTG ¼ fp
kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þ k2⊥
p

�
1þ 3

2

�
v
vph

�
2
�
; ð1Þ

where kz ≡mzπ=Lp and k⊥ ¼ R−1
p ½2= lnðRw=RpÞ�1=2 are

the axial and transverse wave numbers, respectively, and fp
is the plasma frequency.
These waves are excited with a rf burst at the linear mode

frequency applied to an end confinement ring, and they are
detected on a confinement ring located slightly off of the
plasma center. Typically, a 10 cycle sine wave burst with a
5 mVpp amplitude is used, resulting in a wave density
perturbation δn=n0 ∼ 0.5%, and wave fluid velocity
vf ∼ 20 m=s, with a concomitant heating of the plasma
by about 3 × 10−5 eV. For this work, we investigate the
damping of the lowest order mz ¼ 1 axial mode occurring
at a frequency f1 ∼ 26 kHz, with phase velocity vph ¼
5200 m=s compared to thermal velocity v ¼ 63 m=s
at T ¼ 10−3 eV.
The time evolution of the wave amplitude, as shown in

Fig. 1, is obtained through sine wave fits to the detected
wave signal in time segments of approximately 5 wave
cycles. An exponential fit to this decreasing wave ampli-
tude determines the damping rate γ. At T ¼ 2.7 × 10−3 eV,
a typical damping rate is γ ∼ 132 s−1 for a “dirty” plasma
composition.
Figure 2 shows measurements of the damping rate over

four decades in the plasma temperature. At high temper-
atures (T ∼ 0.5 eV), collisionless Landau damping domi-
nates. Quantitative agreement with Landau theory is
obtained for small amplitude waves as indicated by the
solid red curve [27]. This prototypical Landau damping
becomes exponentially weak for T ≲ 0.2 eV. However, we

believe that Landau damping is extended to a lower
temperature regime (0.02≲ T ≲ 0.2 eV) through the same
Landau interaction acting on “bounce-harmonics” of the
wave introduced through finite-length effects. At present,
the harmonics introduced from the plasma ends are ill
understood, but recent experiments [28] with controlled
harmonic generation have shown stronger damping in good
agreement with bounce harmonic damping theory [29] in
this temperature regime.
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FIG. 1. The amplitude evolution of an mz ¼ 1 TG wave. An
exponential fit (red curve) to the decreasing amplitude determines
the damping rate. The measured mode frequency remains
constant over the evolution.
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FIG. 2. Symbols are damping measurements on plasmas
with three different species compositions and a density
n0 ∼ 1.9 × 107 cm−3. Symbol shapes represent measurements
on different plasmas. Curves correspond to drag damping
predictions for both a classical calculation that assumes only
short-range collisions (dashed), and a calculation including the
new long-range enhanced collisional slowing (solid). Horizontal
error bars represent typical radial variations in the temperature.
Vertical errors are smaller than the symbol size.
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Here, we focus on T ≲ 10−2 eV, where the damping is
dependent on the plasma composition, and scales roughly
as T−3=2. Figure 2 shows damping measurements on
plasmas with three different compositions. We find that
the damping increases by a factor of 4 as the concentration
of impurities is increased from the “clean” to “dirty”
plasma compositions. The uncertainty in the measured
damping rates is about �10%, which is smaller than the
vertical size of the symbols. The scatter of the different
symbol shapes for a given composition corresponds to
damping measurements on different plasmas with slight
compositional variations, but roughly the same damping.
For T ≲ 10−3 eV, the damping is observed to decrease from
the T−3=2 scaling, consistent with the onset of centrifugal
mass separation. The fact that the measured damping is
dependent on the plasma composition and scales as T−3=2

supports interspecies drag as the observed damping
mechanism.
This interspecies drag damping is adequately modeled

by cold fluid theory. Basically, ions are accelerated by the
wave electric field as qsE=Ms, producing a disparity in the
velocity of different species. Interspecies collisions then
cause drag forces on each species, which damps the wave.

The oscillating velocity vðsÞf of species s parallel to the
magnetic field is predicted to be

vðsÞf ¼ qskzδϕ
Msω

− i
X

s0

νss0

ω
ðvðsÞf − vðs

0Þ
f Þ; ð2Þ

where νss0 is the collisional slowing rate between species s
and s0, δϕ is the wave potential, and ω is the complex wave
frequency.
We are able to directly measure the mean velocities of the

three Mgþ isotopes by measuring the parallel velocity
distribution Fðv∥Þ coherent with the wave-phase θlðtÞ
received on the wall. Figure 3 (top) shows the wave-phase
coherent Fðv∥Þ of the Mgþ isotopes for 8 different phase
bins θl ¼ ðl − 1Þ2π=8. These wave-phase coherent distri-
butions are measured by tuning the probe laser frequency to
be resonant with a Mgþ isotope moving at a velocity v∥. A
wave is then excited, and the time of arrival of each
fluorescent photon is recorded along with the wave
amplitude and phase. The photons are then binned by
wave phase over 400 wave cycles. This process is repeated
at 512 different velocities (laser frequency detunings) to
construct Fðv∥Þ. The Mgþ distributions are found to
oscillate around v ¼ 0 (vertical orange lines) as the ions
are accelerated by the wave electric field. Here a large
amplitude drive of 20 m Vpp has been used to induce a fluid

velocity vð24Þf ¼ 77 m=s comparable to the thermal speed v.
The black symbols and curves in Fig. 3 (bottom) are

measurements of and sine wave fits to the central velocity
of each isotope distribution for the 8 different phase bins.
These fits determine the oscillating fluid velocity of each

Mgþ isotope. The velocity difference δvðsÞf ≡ vðsÞf − vð24Þf of

the isotopes 25Mgþ and 26Mgþ are represented by the red

curves. We find δvð25Þf ¼ −ð4.1� 1.1Þ%vð24Þf and δvð26Þf ¼
−ð8.2� 1.1%Þvð24Þf in agreement with the 4% and 8%
increases in the respective isotopic masses. That is, the
species move independently in the (single) electric field,
with weak collisional interactions.
The drag damping is calculated by solving for

ω≡ ωr þ iγ in the linearized Poisson equation,

1

r
∂
∂r

�
r
∂δϕ
∂r

�
− k2zδϕ ¼ −

4πqskz
ω

X

s

n0sv
ðsÞ
f ð3Þ

using a shooting method. Here, the linearized continuity

equation δns ¼ kzn0sv
ðsÞ
f =ω has been used to replace the

perturbed density δns with the species velocity vðsÞf . Also,
the equilibrium density n0s has radial dependence at low
temperatures when centrifugal mass separation becomes
important.
For plasmas that are both radially uniform and haveweak

collisionality (νss0 ≪ ωTG), the collisional drag damping
can be solved analytically as

FIG. 3. Measurements of the parallel velocity distribution
function Fðv∥Þ coherent with the wave-phase θlðtÞ (top); each
phase is offset for clarity. Black symbols and curves (bottom)
are measurements of and sine wave fits to the central velocity of
the oscillating Mgþ distributions. Red curves (bottom) are 25×
the relative velocity of the Mgþ isotopes to that of 24Mgþ.
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γ ¼ 1

4ω2
p

X

s

X

s0

ðMs0 −MsÞ2
M2

s0
ω2
p;sνss0 ; ð4Þ

where ω2
p;s ¼ 4πq2sn0s=Ms is the species plasma frequency,

and ω2
p ¼ Σω2

p;s is the total plasma frequency. This
equation is valid in the regime T ≳ 10−3 eV for the plasmas
considered in these experiments. Equation (4) recovers the
electron-ion drag damping results of Lenard and Bernstein
[30] for neutral plasmas. The enhancement of νss0 due to
long-range collisions will be seen to increase the drag
damping.
Recent theory [12] has shown that two types of long-

range collisions occur, separated by the newly identified
diffusion scale length d≡ bðv2=b2ν2ss0 Þ1=5 ∝ T1=5. In these
experiments, the diffusion scale length is varied over the
range 33≲ d≲ 135 μm by changing the plasma temper-
ature 10−4 ≲ T ≲ 1 eV. For impact parameters ρ < d,
collisions occur faster than the diffusion time scale, so
they can be regarded as isolated Boltzmann collisions. In
contrast, for ρ > d, multiple weak collisions occur simul-
taneously and particles diffuse in velocity, so Fokker-
Planck theory is required. The predicted slowing-down
rate has the “classical” scaling νss0 ¼

ffiffiffi
π

p
n0s0vss0b2 lnΛ,

where vss0 ¼
ffiffiffiffiffiffiffiffi
2Tμ

p
=Ms, μ ¼ MsMs0=ðMs þMs0 Þ is the

reduced mass, with an enhanced Coulomb logarithm

lnΛ ¼ 4

3
ln

�
min½rc; λD�

b

�
þ h ln

�
d

max½b; rc�
�

þ 2 ln

�
λD

max½d; rc�
�
: ð5Þ

The first logarithmic term in Eq. (5) is from classical short-
range collisions and is equivalent to 5νii=4 [31]. The
collisional slowing rate is enhanced by the second and
third terms, which represent long-range Boltzmann and
Fokker-Planck collisions, respectively. For repulsive
(like-sign) collisions h ¼ 5.899, increased from 4 due to
“collisional caging” [4] whereas h ¼ 0 for attractive
(opposite-sign) collisions in neutralized plasmas.
Predictions of the drag damping theory for both a

classical calculation that assumes only short-range colli-
sions (dashed line), and a calculation including the new
long-range enhanced collisional slowing (solid line) are
shown in Fig. 2. Theory is in quantitative agreement with
the experimental results only when long-range collisions
are included, since the slowing rates exceed classical short-
range rates by as much as an order of magnitude. The
broadness of the “clean” plasma theory curve results from a
larger uncertainty in the species fractions.
At T ≲ 10−3 eV, the measured and predicted drag

damping rates decrease from the nominal T−3=2 scaling.
Two effects are responsible for this decrease. First, the ions
begin to centrifugally separate by mass, with the lighter
ions near r ¼ 0. This radial separation reduces the species

overlap, and thus reduces the interspecies drag. Secondly,
the collision rates approach the wave frequency, so species
collide before developing a disparity in velocity. In essence,
the species fluid elements begin to collisionally lock, which
decreases the drag.
Both fluid locking and centrifugal separation are depen-

dent on the plasma density. Figure 4 focuses on the
narrower temperature regime of drag damping for three
different density plasmas. A similar quantitative agreement
with long-range enhanced drag damping theory is observed
as the density is changed by a factor of 7. As the density
increases, centrifugal separation and fluid locking occur at
higher temperatures, and a corresponding increase in the
temperature of the measured “peak” damping is observed.
These results suggest that fluid locking and centrifugal
separation are at least in part responsible for the decrease in
the damping from the T−3=2 scaling.
ForT ≲ 4 × 10−4 eV, current theory is inadequate.Global

correlation effects become significant, with correlation
parameter Γ≡ q2s=aT ≳ 0.2 for n0 ¼ 1.9 × 107 cm−3 here
a≡ ð3=4πn0Þ1=3. Correlations limit the parallel collision-
ality [32–34], decreasing the effects of fluid locking, and
increasing the predicted damping rates. Also, in this cen-
trifugally separated regime, viscosity from like-particle
collisions [35] may be important, which is not included in
the current theory.
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FIG. 4. Drag damping rates on three plasmas with different
densities and compositions. Symbols are measurements and
curves are theory predictions assuming only classical collisions
(dashed line) or including long-range enhanced collisions
(solid line). Arrows indicate the temperature of peak measured
damping.
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In summary, measurements of collisional interspecies
drag damping provide the first experimental confirmation
of enhanced collisional slowing due to long-range colli-
sions. Collisional drag damping theory is in quantitative
agreement with the experimental results for a range of
plasma compositions and densities only when long-range
collisions are included. At low temperatures T ≲ 10−3 eV,
the observed damping is reduced from the typical T−3=2

collisional scaling as centrifugal separation and fluid
locking become significant. Correlations and viscosity
may increase the damping at ultralow temperatures.
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