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Many physical systems involve time-delayed feedback or coupling. In such delay systems, noise can give
rise to undesirable oscillations at frequencies resonant to the delay times. We investigate how an additional
feedback term can suppress noise-induced modulations in delay systems with self-feedback that exhibit
deterministic oscillatory dynamics. A simple characteristic equation is derived to predict optimal delay times
for the prototypical example of a Stuart-Landau oscillator subject to two feedback terms.We then show that a
characteristic equation of the same form accurately describes the dominant Floquet modes of more complex
oscillatory systems and hence can be used to optimize the suppression of noise-induced modulations.
This is shown for mode-locked lasers and FitzHugh-Nagumo oscillators subject to self-feedback.
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The control of dynamical systems via time-delayed
feedback has been a very active field over the last few
decades and has resulted in a wide range of applications,
including chaos control [1,2], the stabilization of steady
states [3,4], temporal pattern formation [5], and improving
the regularity of oscillatory dynamics [6]. Feedback control
is ubiquitous in many areas of science and engineering;
examples are found in electronics [7], neuroscience [8],
quantum mechanics [9], and optics [6,10–12]. Any physi-
cal realization of such systems will inevitably involve some
source of noise, which in the combination with time delay
can lead to noise-induced oscillations [13] or noise-induced
modulations in oscillatory systems [14]. This phenomenon
has been observed in various systems involving time
delay: fiber ring-cavity lasers [15], passively mode-locked
semiconductor lasers subject to optical feedback [16,17],
delay-coupled lasers [18], neural networks [19], and gene
regulatory networks [20]. Such noise-induced dynamics are
generally detrimental to the desired applications; hence,
there is a need to control or suppress them. In this Letter we
show how this can optimally be achieved by the addition
of another feedback loop (Fig. 1) in systems with time-
delayed self-feedback which exhibit deterministically sta-
ble oscillatory dynamics. We present a simple characteristic
equation that appears to be system independent and power-
ful enough to predict the delay times needed for the optimal
suppression of noise-induced modulation of oscillatory
dynamics. It therefore has great potential for application
in diverse areas. Our results also allow substantially longer
delay times to be studied than what is practically possible
with computationally restricted numerical tools.
To date, relatively little research has been carried out on the

suppression of noise-induced dynamics in systems involving
time delay. Most works concentrate on systems in a deter-
ministically stable steady state which are close to a bifurca-
tion leading to oscillatory dynamics [21–23], and they use
delayed feedback, either with the aim of suppressing the

noise-induced oscillations [13] or stabilizing them [22,
24–26]. In the fiber laser community, experimental studies
have reported on the suppression of noise-induced dynamics,
referred to as supermode noise, via the addition of a second
fiber cavity [15,27–29]. However, their theoretical consid-
erations for the choice of the feedback conditions were based
on the Vernier principle [15], which is not sufficient for
determining conditions for optimal modulation suppression.
In nondelay systems exhibiting noise-induced oscilla-

tions, suppression is possible by adding feedback with the
delay time equal to half the period of the noise-induced
oscillations [22,25]. However, an oscillatory system with
delayed feedback has infinitely many Floquet exponents
and a finite number of these can be weakly damped. The
most prevalent frequency of the noise-induced modulations
will correspond to the Floquet exponent with the smallest
modulus of the real part, which, for sufficiently strong
feedback, is related to the feedback delay time. In this
scenario, because of the multitude of Floquet exponents,
the noise-induced modulations cannot be optimally sup-
pressed by simply choosing the second feedback delay time
to be equal to half of the modulation period, as this delay
time will be resonant with the second mode of the first
feedback term. Thus, a different approach is needed and
will be addressed in this Letter.
We first study the prototypical example of a Stuart-

Landau oscillator and then compare the results with two
specific examples, a passively mode-locked laser and a
FitzHugh-Nagumo oscillator. Although these two systems
exhibit complex and very different dynamics [30–33], we
are able to show that the dependence on the time delay, in
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FIG. 1. Oscillatory system with twofold self-feedback.
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terms of modulation suppression, is general to all three
systems. In this Letter we are exclusively concerned with
the influence of the feedback terms on the suppression of
the noise-induced modulation of limit cycles. Therefore,
we restrict ourselves to feedback conditions that do not
qualitatively change the dynamics, i.e., feedback delay
times that are integer multiples of the period of the
deterministic dynamics. Furthermore, we know that the
noise-induced modulations are caused by excitations of
eigenmodes of the system and hence are related to the
stability of the underlying deterministic systems [22]. We
will therefore first investigate the damping rates of the
Floquet exponents of the systems in the absence of noise.
For this, we perform a linear stability analysis under the
assumption of small noise terms since we are considering
cases where noise causes a modulation of the dynamics but
the underlying oscillatory motion is still preserved.
The Stuart-Landau oscillator subject to two feedback

terms is given by

_z ¼ ½λ0 þ iω0 − ð1þ iγÞjzj2�zþ
X

n¼1;2

Kneiθnzðt − τnÞ; ð1Þ

where z ∈ C, λ0 is the bifurcation parameter exhibiting a
supercritical Hopf bifurcation at λ0 ¼ 0 in the absence of
feedback, ω0 is the oscillation frequency at λ0 ¼ 0, γ is the
amplitude-phase coupling (anisochronicity), K1 and K2 are
the feedback strengths, θ1 and θ2 are the feedback phases,
and τ1 and τ2 are the feedback delay times. We are
interested in the oscillatory regime of the system without
delay, and we therefore choose λ0 > 0 to put the system
above the Hopf bifurcation.
This system has solutions of the form z ¼ reiΩt, where r

is the constant amplitude of the oscillations and Ω is the
frequency. Entering this ansatz into Eq. (1), the amplitude
and the frequency are determined by

r2 ¼ λ0 þ K1 cos ðθ1 − Ωτ1Þ þ K2 cos ðθ2 − Ωτ2Þ ð2Þ

and

Ω ¼ ω − γλ0 þ
X

n¼1;2

Kn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
sin½θn −Ωτn − arctanðγÞ�:

ð3Þ
To calculate the Floquet exponents, λ, of this system, the

characteristic equation

�
r2 þ λþ

X

n¼1;2

Kn cos ðθn −ΩτnÞð1 − e−λτnÞ
�
2

¼ r4 − 2γr2
X

n¼1;2

Kn sin ðθn − ΩτnÞð1 − e−λτnÞ

−
X

n¼1;2

K2
nsin2ðθn −ΩτnÞð1 − e−λτnÞ2; ð4Þ

which is obtained by linearizing the system about its periodic
solutions, must be solved. In the case of only one feedback
term, this can be done analytically by expanding λ in orders
of τ−1 [34]. However, the same approach cannot be applied
to the dual feedback case, as the order of magnitude of
the second delay time can vary in comparison to the first.
To simplify Eq. (4), some assumptions are needed.
Since we restrict ourselves to resonant feedback, the

delay times are integer multiples n of the period T0¼ 2π=Ω
of the oscillator; i.e., τ1;2 ¼ nT0. Furthermore, we restrict
the feedback phases by considering that the feedback phase
for perfectly resonant feedback is zero. In this case, Eqs. (2)
and (3) can be simplified to

r2 ¼ λ0 þ K1 þ K2 and Ω ¼ ω0 − γr2; ð5Þ
where Ω no longer depends on the feedback delay times.
The characteristic equation thus reduces to

r2 ¼ �
�
r2 þ λþ

X

n¼1;2

Knð1 − e−λτnÞ
�
: ð6Þ

As long as λ0 > 0 and the delay times are sufficiently large,
the largest Floquet exponents are given by the plus sign in
Eq. (6):

λ ¼ −ðK1 þ K2Þ þ K1e−λτ1 þ K2e−λτ2 : ð7Þ
In this expression there is only implicit dependence on
the parameters of the Stuart-Landau system, which enters
through the constraints put on the delay times (i.e.,
τ1;2 ¼ nT0). Here, we also note that the same characteristic
equation is obtained for a Pyragas-type feedback scheme,
i.e.,K½zðt− τÞ− zðtÞ� [1]. To answer the question of optimal
modulation suppression, we solve Eq. (7) numerically and
find the Floquet exponents in dependence of the delay
times and the feedback strengths.
In Figs. 2(a) and 2(b), the damping rate and the frequency

of the dominant Floquet exponent (Re½λ� and Im½λ�, respec-
tively), neglecting the neutral mode, are plotted depending
on the feedback strengths and τ2 (τ1 ¼ 500T0 and τ2 ranges
from zero to τ1). Here, we chose K1 ¼ K2 for simplicity;
however, Eq. (7) also holds for K1 ≠ K2. When τ2 is close
to τ1, the most dominant Floquet exponent is very weakly
damped because the frequency of this Floquet exponent is
resonant to both feedback terms [≈2π=τ1, as indicated by
label 1 in Fig. 2(b)]. The same applies if τ2 is close to zero.
For intermediate τ2 values, peaks in Re[λ] [the white regions
in Fig. 2(a)] occur at the values where τ1 and τ2 have low
common multiples. Here, the frequency of the dominant
Floquet exponents corresponds to higher order resonant
modes of the first feedback term (integer multiples of
2π=τ1). Thus, the dominate frequency of noise-induced
modulation can be changed by varying τ2 since, in the
presence of noise, the least damped mode is most strongly
excited.
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The frequency component of the dominant Floquet
exponents form a Farey tree [35], as is common to systems
with competing characteristic times. The number of levels
(frequency plateaus) present in the Farey tree—or, in other
words, the number of maxima in the damping rate—
depends both on the feedback strength and τ1. The feed-
back strength dependence can clearly be seen in Fig. 2(b).
For increasing values of K1 ¼ K2 higher order frequency
tongues appear, meaning that the number of levels in the
Farey tree increases. Although not shown here, increasing
τ1 has, qualitatively, the same effect.
Optimal suppression of the noise-induced modulation of

the limit cycle will occur for feedback parameters for which
the damping rates are maximized [minimal Re½λ�, i.e., the
darker regions in Fig. 2(a)], as then the ability of the noise
to excite the dominant Floquet modes is reduced [22]. See
the Supplemental Material [36] for examples. Comparing
various feedback strengths in Fig. 2(a), it is evident that this
does not occur for a fixed ratio of τ1 and τ2, but that it
depends strongly on the feedback strengths. Selecting τ2
correctly becomes more important the longer τ1 is, as
there are more maxima in the damping rate, meaning that
small differences in τ2 can lead to large differences in the
suppression of the noise-induced modulation.
We now compare the results for the Stuart-Landau

system with a passively mode-locked laser. See the
Supplemental Material [36] for the equations describing
the passively mode-locked laser system with two external
feedback cavities [37]. Also in the Supplemental
Material [36] are results for the FitzHugh-Nagumo system
with two noninvasive feedback terms [33], which are
qualitatively similar to the mode-locked laser results
presented here. These two systems exhibit complex dynam-
ics in their respective oscillatory regimes, with both
producing a pulsed output. Owing to the complexity of
these systems, although the existence of some characteristic
equation is mathematically proven for the linearization
around the periodic orbit [38–40], a simple characteristic

equation cannot easily be derived. We therefore use DDE-
BIFTOOL [41] to calculate the Floquet exponents. Results of
the DDE-BIFTOOL calculations, in dependence of τ2, are
shown for the mode-locked laser in Figs. 3(a) and 3(b),
where the real and imaginary parts of the three dominant
Floquet exponents are plotted. The Floquet exponents show
similar dependence to that found for the Stuart-Landau
system in Fig. 2. Despite the more complex dynamics with
time-varying amplitudes, fitting of the numerically obtain
results shows that the Floquet spectra can be described with
a simple characteristic equation in the form of Eq. (7),

λ ¼ −ðKeff
1 þ Keff

2 Þ þ Keff
1 e−λτ1 þ Keff

2 e−λτ2 ; ð8Þ

now, however, with effective feedback strengths that
depend on the system. The delay times are again restricted
to integer multiples of the period of the particular dynami-
cal system, τ1 ¼ n1T0 and τ2 ¼ n2T0 for n1; n2 ∈ N.
In Fig. 3, the white symbols indicate the three dominant
Floquet exponents obtained from the DDE-BIFTOOL calcu-
lations. Plotted behind these are the results of the fitted
characteristic equation, with the red circles indicating the
most dominant Floquet exponent. The only fit parameters
are the effective feedback strengths, which are Keff

1 ¼
Keff

2 ¼ 0.0485 for the mode-locked laser with feedback
strengths K1 ¼ K2 ¼ 0.05. The effective feedback
strengths depend on the internal dynamics of the particular
system; however, they are independent of the resonant
feedback delay lengths; i.e., fitting the numerically
obtained Floquet exponents for different τ1 values yields
the same effective feedback strengths (see the
Supplemental Material [36] for an example). This almost
perfect agreement between numerics and the fit of Eq. (8)
shows that, despite the complex and disparate dynamics
exhibited by various oscillatory systems, modulation

(a)

(b)

FIG. 2. (a) Real and (b) imaginary parts of the dominant
Floquet exponent of the Stuart-Landau system [Eq. (7)], with
two feedback terms for K1 ¼ K2 and τ1 ¼ 500T0. Parameters are
λ0 ¼ 2, ω0 ¼ 5, and γ ¼ −5. The integer labels in (b) indicate
multiples of 2π=τ1.

(a)

(b)

(c)

(d)

r

FIG. 3. (a),(c) Real and (b),(d) imaginary parts of the three
dominant Floquet exponents of a passively mode-locked laser
subject to (a),(b) resonant feedback and (c),(d) off-resonant
feedback with τ0 ¼ 0.984T0. The white markers indicate the
numerically calculated values, while the red and grey markers
indicate the results of the fitted characteristic equation. Param-
eters are K1 ¼ K2 ¼ 0.05, τ1 ¼ 100T0, and Keff

1 ¼Keff
2 ¼ 0.0485

for (a),(b) and Keff
1 ¼ Keff

2 ¼ 0.0465 for (c),(d). All other param-
eters are as in the Supplemental Material [36].
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suppression occurs in a very similar manner. Differences
only occur in how strongly the feedback acts upon the
system—i.e., in Keff but not in the form of the characteristic
equation. Our results suggest that, using this relatively
simple characteristic equation [Eq. (8)], predictions of
feedback conditions for optimal suppression of noise-
induced modulations can be made for a wide range
of systems subject to self-feedback, or coupling, provided
that the delay matrix can be written in a diagonal form or
that the entries on the diagonal are dominant. This approach
also makes it possible to study substantially longer delay
times than what is practically possible with numerical tools
such as DDE-BIFTOOL, which are restricted due to memory
and calculation time requirements.
We have presented results for resonant feedback, i.e.,

τ1;2 ¼ n1;2T0, where T0 is the period. It is shown in
Ref. [42] that solutions must also exist under modified
resonance conditions, i.e., for τ1;2 ¼ τ0 þ n1;2Tðτ0Þ, where
τ0 is a small delay (< T0) and Tðτ0Þ is the period of
the system for feedback with τ1 ¼ τ2 ¼ τ0. Under such
modified resonance conditions, it can also be possible to
describe the dominant Floquet exponents with Eq. (8), as
long as the feedback delay times are still close to integer
multiples of the resulting period. However, the change in
the feedback conditions influences the dynamics of the
particular system, resulting in different effective feedback
strengths. For example, for the mode-locked laser system
with τ0 ¼ 0.984T0, the Floquet exponents are described
by Eq. (8), with Keff

1 ¼ Keff
2 ¼ 0.0465, as can be seen in

Figs. 3(c) and 3(d), where the numerically calculated
Floquet modes and the results of fitting Eq. (8) are shown.
If the delay offset τ0 results in a significant discrepancy
between the delay times and integer multiples of the
period, the fit of Eq. (8) becomes less accurate (see the
Supplemental Material [36] for examples).
To confirm that the relative modulation suppression

can indeed be determined from the Floquet exponents
given by Eq. (8), we use the mode-locked laser with
τ1¼ τ0þ1000T0, for τ0 ¼ 0.984T0, and compare Floquet
spectra (Fig. 4) with numerically calculated power spectra
(Fig. 5). The effective feedback strengths used in Fig. 4
are the fitted values from the n1 ¼ 100T0 case shown in
Figs. 3(c) and 3(d). For the calculation of the power spectra,
Gaussian white noise

ffiffiffiffiffiffiffi
2D

p
ξðtÞwith intensity D is added to

the system [37]. The τ2 values used in Figs. 5(a)–5(d)
correspond to the positions of the blue vertical lines in
Fig. 4. The central peak in all spectra is the third harmonic
of the repetition frequency (f ¼ Ω=2π ≈ 40 GHz) of the
laser output. The smaller side peaks are caused by the
noise-induced modulation of the oscillatory dynamics.
Plotted in green in Fig. 5 is the power spectrum for the
case n2 ¼ n1 ¼ 1000, where the damping rates are very
small and frequencies corresponding to all of the larger
Floquet exponents are present (note the 1=τ1 spacing of the
side peaks). For n2 ¼ 90, the Floquet exponents have

comparatively large damping rates, leading to a significant
suppression of the side peaks close to the main peak. The
second largest Floquet exponent predicted in Fig. 4 has a
frequency of about 10=τ1. In agreement with this, the
side peaks near the tenth from the center are the least
suppressed. At n2 ¼ 325 [Fig. 5(b)], the third harmonic
frequency is undamped, while the fundamental and the
second harmonic are suppressed. Accordingly, only every
third side peak is present in the power spectrum for
n2 ¼ 325. Similar comparisons show agreement for the
other τ2 values depicted in Figs. 5(c) and 5(d). The spectra
in Fig. 5 show that the lowest power in the side peaks
occurs for the example which corresponds to the highest
damping rates of the dominant Floquet exponents
(n2 ¼ 90). This indicates that the relative damping rates
of the dominant Floquet exponents can be used as a guide
to select delay times which optimize the suppression of
noise-induced modulations. For passively mode-locked
lasers, suppressing noise-induced modulations results in
a reduction of the timing jitter [32], which is desired for
most applications of these devices.

(a)

(b)

FIG. 4. (a) Real and (b) imaginary parts of the dominant
Floquet exponents of the mode-locked laser system as predicted
from the fitted characteristic equation (8), depending on n2,
where τ2 ¼ τ0 þ n2T0. The vertical blue lines indicate the
parameters for the power spectra shown in Fig. 5. Parameters
are Keff

1 ¼ Keff
2 ¼ 0.0465, τ0 ¼ 0.984T0, and τ1 ¼ τ0 þ 1000T0.

(a) (b)

(c) (d)

FIG. 5. Power spectra SjEj of the output of the mode-locked laser
system for various feedback delay times τ2 ¼ τ0 þ n2T0 (corre-
sponding to the vertical lines in Fig. 4). In green is the spectrum
for τ2 ¼ τ1 ¼ τ0 þ 1000T0. Parameters are K1 ¼ K2 ¼ 0.05,
τ0 ¼ 0.984T0, and τ1 ¼ τ0 þ 1000T0, and n1 ¼ 90 for (a),
n1 ¼ 325 for (b), n1 ¼ 495 for (c), and n1 ¼ 710 for (d). All of
the other parameters are as in the Supplemental Material [36].
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In conclusion, we have investigated how the suppression
of noise-induced modulations in oscillatory systems subject
to feedback depends upon an additional feedback term. For
the prototypical Stuart-Landau system, we have derived a
simple characteristic equation for the Floquet exponents in
the case of resonant feedback. We have shown that the
dominant Floquet exponents of more complex oscillatory
systems under resonant self-feedback can also be described
by the same simple characteristic equation. The local
dynamics has been found to enter only implicitly through
the effective feedback strengths. We have found that
optimal feedback conditions for oscillation suppression
do not depend trivially on some fixed ratio of the delay
times, but rather on how strongly the feedback acts on the
system and influences its stability. We believe that the
results we have presented in this Letter can be applied to a
wide range of dynamical systems and add insight into the
mechanism on how noise-induced modulations can be
suppressed in an optimal way in systems subject to delayed
feedback. General derivations of Eq. (8) and characteristic
equations for other delayed-coupling schemes, as well
as the derivation of analytic expressions for Keff are
challenging tasks and warrant further investigation.
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