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We have discovered a new domain of optical coherence, and show that it is the third and last member of a
previously unreported fundamental triad of coherences. These are unified by our derivation of a parallel
triad of coherence constraints that take the form of complementarity relations. We have been able to enter
this new coherence domain experimentally and we describe the novel tomographic approach devised for
that purpose.
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Background.—Coherence is a concept whose entrance
into physics can be traced to Young’s report of light
field interference [1]. Its importance is now recognized
across all of science from astronomy to chemistry and
biology as well as in physics (see Refs. [2,3]). This is the
reason that recent announcements of previously hidden
optical coherences [4–9] have been so startling. In our
view, a unified explanation has been strikingly absent.
Here we report discovery of a new domain of optical
coherence. We also show that it is the third and last
member of a fundamental triad of coherences, and, addi-
tionally, that these are unified by the derivation of a
triad of previously unreported coherence constraints that
take the form of complementarity relations. They provide
a coordinated understanding of all so-called hidden
coherences. Accompanying these advances is a report
of experimental entry into the new coherence domain, and
details of results obtained within it.
We begin by accounting for the independent degrees of

freedom available to an observed optical field. These are
space, time, and spin (intrinsic polarization). The idealized
optical beam context, with a single direction of propaga-
tion, allows a slight simplification, which we take for
granted. We will ignore the propagation degree of freedom
and write the beam’s complex amplitude in terms of the
orthonormal bases for each of its other degrees of freedom,
the two-dimensional transverse coordinate r⊥, time t, and
spin (polarization) ŝ:

~Eðr⊥; tÞ ¼ E0

X

k;m

X

i¼1;2

dikmŝiFkðtÞGmðr⊥Þ; ð1Þ

where dikm are complex coefficients. Specifically, the spin
unit vectors ŝi, conventionally (ĥ, v̂) or (x̂, ŷ), satisfy
ŝ1 · ŝ2 ¼ 0, and the transverse beam basis functions
Gmðr⊥Þ are taken as orthonormal in integration across
the beam. The basis functions FkðtÞ are orthonormal
eigenfunctions of the integral equation that has the field’s

temporal correlation function as kernel (see Ref. [10] and
Sec. IV. 7. 1 in Ref. [3]).
The foundation of our analysis is a finite set of contextual

projections of ~E. They are accomplished by more or less
obvious experimental arrangements, and their purpose is
to isolate independent coherences among pairs of degrees
of freedom. Each of these degrees of freedom defines
(occupies) one of the independent vector spaces of the field,
and for convenience we now label them s for spin, t for
time, and r for transverse spatial location. For example, the
r projection is accomplished by transverse beam integra-
tion, leaving an st field:

~EðmÞ
st ðtÞ ¼

Z
d2r⊥G�

mðr⊥Þ~Eðr⊥; tÞ

¼ E0

X

k

X

i¼1;2

dikmŝiFkðtÞ: ð2Þ

Each of the s, t, r vector spaces allows such a projection,
and the resulting projections of the field (1) produce these
three reduced vectors:

jeitr ¼
X

k;m

akmjFki ⊗ jGmi; ð3Þ

jeisr ¼
X

i;m

bimjsii ⊗ jGmi; ð4Þ

jeist ¼
X

i;k

cikjsii ⊗ jFki; ð5Þ

where the tensor product symbols between vector spaces
will rarely be repeated. The three relations (3)–(5) all refer
to the same original field (1). They arise in three different
experimental contexts [11]. The lower case jei notation
indicates that each of the projected fields has been
normalized to unit intensity. The coefficients contain
relative amplitudes making the kets orthonormal in their
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own vector spaces: hsijsji ¼ hFijFji ¼ hGijGji ¼ δij, and
hejei ¼ 1 in each case.
To discuss the coherence in Eq. (5), which is the most

familiar projection and the same as in Eq. (2), we can
conveniently denote the orthogonal components jsii in
Eq. (5) to be horizontal and vertical: jhi and jvi. Then we
have

jeist ¼
X

k

chkjhij ⊗ jFki þ
X

k

cvkjvij ⊗ jFki: ð6Þ

The polarization (spin) vectors jhi and jvi identify their
respective temporal mode sums as the independent hori-
zontal and vertical components of the normalized field:

X

k

chkjFki ¼ jehi and
X

k

cvkjFki ¼ jevi; ð7Þ

allowing us to rewrite Eqs. (5) and (6) as

jeist ¼ cos
θ

2
jhi ⊗ jehi þ sin

θ

2
jvi ⊗ jevi; ð8Þ

where the cosine and sine factors permit arbitrary division of
the unit amplitude between the two terms while allowing
each component to be unit normalized: hehjehi¼hevjevi¼1.
Equation (8) shows that the spin and amplitude vector

spaces making up jeist are factorable when jeist is perfectly
polarized. For example, if θ ¼ π, then the field is com-
pletely v polarized (has only a jvi component). By the same
token jeist → jvi ⊗ jevi gives a field that is obviously
factorable (separable) between its spin and temporal-
amplitude degrees of freedom.
Coherence constraints and a new coherence domain.—

The noted similarity of polarizability and separability can
be quantified. The degree of polarization Pst is determined
by the two eigenvalues λ1 ≥ λ2 of the polarization coher-
ence matrix, and they obey λ1 þ λ2 ¼ 1 when the field is
normalized to unit intensity, as we have done, giving the
known result [12,13]

Pst ¼ λ1 − λ2; ð9Þ

guaranteeing 1 ≥ Pst ≥ 0. At the same time, the degree of
st entanglement, which we measure via concurrence [14]
and denote Cst, is given by

Cst ¼ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; ð10Þ

where 1 ≥ Cst ≥ 0. Simple arithmetic now yields a quad-
ratic constraint. It quantifies the coherence sharing which
unites degree of polarization and degree of concurrence
(nonseparability, entanglement):

C2st þ P2
st ¼ 1: ð11Þ

This constraint is significant, not coincidental [15]. Its
exact counterpart arises in the independent (and contex-
tually distinct) sr coherence present in Eq. (4). A form of sr
coherence was perhaps first noted by Gori et al. [16], and
has recently been explored in detail both experimentally
and theoretically and noted as a hidden coherence by
Abouraddy et al. [4]. They employed the Bell measure to
engage entanglement. The joint sr correlation also supports
a polarization matrix, independent of the st correlation
but with the same eigenvalue properties, so the same
constraint also applies to sr coherence:

C2sr þ P2
sr ¼ 1: ð12Þ

Given the three projection relations (3)–(5), it is obvious
that there must exist a tr coherence. In a striking departure
from previous cases, tr coherence implies a new kind of
“polarization,” one in which the spin degree of freedom is
not involved at all. This opens a door on an unexplored
domain of optical coherence, the heretofore missing
member of a fundamental triad implied by the triad of
degrees of freedom of the field. Clearly it must be included
for completeness [11].
In the following sections we will report the first

experimental observations and quantifications associated
with it, as well as a laboratory search for the now-expected
third quadratic constraint,

C2tr þ P2
tr ¼ 1: ð13Þ

The tr coherence matrix is infinite dimensional, which
precludes the use of the same analysis of polarization and
entanglement employed for st and sr coherences. However,
the Schmidt theorem of analytic function theory [17],
which we have demonstrated previously [18], provides
a tr context that allows comparison. The next section
describes a setup that enters the new coherence domain via
two orthonormal spatial modes.
Experimental considerations.—Our experimental tr

analysis uses an optical field running in two Hermite-
Gauss (HG) orthonormal spatial modes, i.e., HG1;0 and
HG0;1 that we designate jGai and jGbi, respectively.
After projection on an arbitrary direction, say horizontal,
of spin polarization, e.g., as in the projection (3), the field
(not intensity-normalized) can be written as

hhjEi ¼ jEitr ¼ jEai ⊗ jGai þ jEbi ⊗ jGbi; ð14Þ

where the two amplitudes jEai and jEbi represent combi-
nations of many orthonormal temporal modes jFki:

jEai ¼
X

k

akajFki; and jEbi ¼
X

k

akbjFki: ð15Þ
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They comprise an unknown combination of modes that we
take experimentally from a multimode diode laser running
below threshold. Because hGajGbi ¼ δab, the intensity is
given by I ¼ jhhjEij2 ¼ hEajEai þ hEbjEbi.
For comparison with its st counterpart in Eq. (8), we can

unit normalize this tr field. We can again use an unspecified
angle θ to signal a division of intensity between Ia and Ib,
meaning a division of field strength between jEai and jEbi.
Thus, we express the nonorthogonal jEis in terms of also
nonorthogonal but unit-normalized jeis to get

jEai ¼
ffiffi
I

p
cos

θ

2
jeai; jEbi ¼

ffiffi
I

p
sin

θ

2
jebi: ð16Þ

By including the two jGi modes and removing the
ffiffi
I

p
factors we obtain the exact analog of Eq. (8), with the unit-
normalized jGai and jGbi replacing the jhi and jvi unit
vectors. Then the unit-normalized field is written

jeitr ¼ cos
θ

2
jGai ⊗ jeai þ sin

θ

2
jGbi ⊗ jebi; ð17Þ

where heajeai ¼ hebjebi ¼ 1, and

heajebi≡ γ ≡ δeiϕ: ð18Þ
Thus, the term by term alignment of Eqs. (8) and (17)

makes it clear that the earlier constraints, Eqs. (11) and
(12), should have an exact counterpart here: C2tr þ P2

tr ¼ 1.
This conclusion should be examined and tested, and we do
that. See the last column of Table I.
The Stokes vector analogs that we have recorded for this

new coherence are defined in the standard way (see an early
consideration by Padgett and Courtial in Ref. [19]):

S0 ¼ Ia þ Ib ¼ I; ð19Þ

S1 ¼ Ia − Ib ¼ I cos θ; ð20Þ

S2 ¼ hFajFbi þ hFbjFai
¼ Iδ sin θ cosϕ; ð21Þ

S3 ¼ i½hFajFbi − hFbjFai�
¼ Iδ sin θ sinϕ; ð22Þ

where δ, θ, and ϕ are defined above. The radius of the
sphere normalized to S0 is conventionally called the degree
of polarization, which refers here to time-space coherence,
so we can write

P2
tr ¼

S21 þ S22 þ S23
S20

¼ cos2θ þ δ2sin2θ: ð23Þ

Clearly θ and δ control the radius of the Poincaré sphere
and provide total (unit radius) time-space coherence when

either δ ¼ 1 or θ ¼ π, and a reduced sphere radius implying
only partial coherence otherwise.
Spatial mode coherence tomography.—We have imple-

mented a new experimental tomography procedure that
is able to acquire complete information of an arbitrary
unknown two-mode input state made from Ga and Gb.
An arbitrary tr optical beam of the form in Eq. (15) is a
good example. The experimental setup for this novel tr
tomography is illustrated by Fig. 1. In the preparation
stage, a spatial light modulator is used to generate a
specific transverse mode, i.e., Einðr⊥; tÞ ¼ Gaðr⊥ÞFaðtÞ.
It is then sent through a Mach-Zehnder interferometer with
two ordinary 50=50 beam splitters. In Path 1 (P1), the
statistical temporal amplitude FaðtÞ is delayed with a
translation stage, while in Path 2 (P2), a Dove prism
(DP1) oriented at π=4 is used to rotate the spatial mode Ga
into Gb and a filter is placed to adjust the path intensity.
The output beam of the MZI is in exactly the form
Eðr⊥; tÞ ¼ Gaðr⊥ÞFaðtÞ þ Gbðr⊥ÞFbðtÞ, of which the nor-
malized expression is given by Eq. (17). The coefficients
cosðθ=2Þ and sinðθ=2Þ are controlled by the filter in
P2 and the parameters δ and ϕ are managed by adjusting
the delay in P1.
The tr coherence tomography stage is composed of three

major elements, a spatial mode converter, a Dove prism,
and a Mach-Zehnder interferometer with an additional
mirror [20]. These elements are, respectively, exact analogs
of a quarter-wave plate, half-wave plate, and polarizing
beam splitter that are employed in ordinary st or sr spin-
polarization tomography. The mode converter MC contains
a pair of appropriately separated cylindrical lenses that will
introduce a relative i phase to the Gb mode with respect to
Ga [21]. The Dove prism is used to rotate the spatial modes

FIG. 1. Schematic experimental setup. Light field (14) is
prepared with a spatial light modulator (SLM) and a modified
Mach-Zehnder interferometer (MZI), where filter (F) controls θ
and the translation stage (TS) manages δ and ϕ. The Stokes
parameters are measured with different combinations of a mode
converter (MC), a Dove prism (DP2), and a Mach-Zehnder
interferometer with an additional mirror (MZIM).
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Ga and Gb to a desired basis αGa þ βGb. The MZIM is
employed to project the mode states Ga, Gb onto the two
output ports, respectively.
With the combination of the MZIM and the Dove prism

DP2 (oriented appropriately in the rotated basis,Ga,Gb and
Ga �Gb), we are able to obtain the Stokes parameters S0,
S1, and S2. Accordingly, the combination of all three
elements, with the DP2 and MC adjusted to account for
a rotated basis Ga � iGb, amounts to an effective meas-
urement of S3. Therefore, all four Stokes parameters can
be recorded.
The conventional presentation of spatial modes for an

optical beam is to display irradiance images of the trans-
verse plane. These provide a positive visual validation of
mode quality, but with the experimental setup described we
can do much more. We produced and reconstructed the
states of various tr “polarized” states. Figure 2 displays the
full Poincaré sphere in panel (a) for all the generated states.
One notes that all the linear states live on the S3 ¼ 0 plane,
as shown in (b), and all the elliptical and circular states live

on the S1 ¼ 0 plane and off the equator (i.e., S3 ≠ 0 or
ϕ ≠ nπ) as shown in panel (c).
We also examined tr states intermediate between the

pure t and r degrees of freedom.We prepared and measured
eight different tr states of partial coherence by varying the
amplitude correlation γ in the preparation stage of our
apparatus. These states are located inside the tr Poincaré
sphere and are illustrated in both panels (a) and (c). One
notes that with the decrease of the two-path temporal
coherence δ combining with the relative phase ϕ change,
the partially coherent states are gradually rotating into the
center of the Poincaré sphere, where there is a complete
lack of coherence. That is, the degree of tr coherence is
getting smaller and smaller. This sequence is shown
explicitly in panel (c), and eventual nearness to the sphere
center is quantified as Ptr ¼ 0.050 in the bottom line of
Table I below.
Summary.—We have identified the tr (time-space)

category of optical coherence for the first time, and have
described its features theoretically, and recorded those
features experimentally. It is the missing member of a
fundamental triad, previously completely hidden and now
revealed by our derivation of the triad of coherence
constraints. The members of the triad arise as in
Eqs. (3)–(5) from separate projections of the same optical
field (1) on its 3 degrees of freedom. One member is
traditionally identified with the correlation of temporal
amplitude with spin (ordinary polarization). Another
member has only recently been identified as a hidden
coherence that correlates spatial amplitude with spin. The
new third member is the first optical coherence independent
of spin, and arises from correlation of temporal and spatial
amplitudes. Our approach establishes that there can be no
more hidden optical coherences [11].
The theoretical analysis leading to the discovery of the tr

coherence domain revealed the presence of a quantitative
balance between the degree of polarization and degree of
entanglement (nonseparability) of the participating vector
spaces (degrees of freedom). This balance takes the form of
quadratic constraints applying to all pairs of degrees of

(a)

(b) (c)

FIG. 2. Experimental data of various time-space polarization
states. Plot (a) is a Poincaré sphere representation of all measured
states where the blue dots, black triangles, and red squares denote
linear, elliptical (including circular), and partial (including
completely unpolarized) polarization states, respectively. Plot
(b) shows points on the equatorial plane S3 ¼ 0, and it contains
all the linear tr states. Plot (c) shows points in the S1 ¼ 0 plane
where the black upward triangles, black downward triangles, and
red squares denote elliptical, circular and partially coherent tr
states, respectively. The red dotted curve is the logarithmic polar
spiral function δ ¼ e−0.23ϕ tracking states with smaller and
smaller degrees of tr coherence. Note: the error bars of the
measured Stokes parameters are relatively small and not shown,
but the magnitude of the maximum error is given in Table I.

TABLE I. Stokes parameters normalized to S0, degree of tr
polarization and concurrence for selected measured states. The
first three are (l)inear, (c)ircular, and (e)lliptical tr states
described by different values of θ and ϕ, and the last two are
(p)artial and (u)n-polarized states. The maximum standard
deviation of all Stokes parameter measurements (including those
not listed in the table but illustrated in Fig. 2) is 0.042.

θ ϕ S1 S2 S3 Ptr Ctr P2
tr þ C2tr

l 3π=2 0 0.026 −0.916 0.037 0.918 0.392 0.996
c π=2 −π=2 0.029 −0.026 −0.889 0.890 0.455 0.998
e π=2 π=4 0.024 0.679 0.625 0.923 0.384 0.999
p π=2 5π=4 0.052 −0.271 −0.306 0.307 0.945 0.988
u π=2 2π 0.042 −0.025 −0.013 0.050 0.991 0.985
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freedom previously discussed [22]. Experimental entry into
the domain of the third coherence required creation in the
laboratory of a new form of optical coherence tomography,
which we described in detail [23].
Two final comments are (a) our discovery of the third

member of the fundamental coherence triad removes the
mystery of hidden coherences. They are a real consequence
of the contextual character of coherence. Context matters.
Coherence between a pair of degrees of freedom is isolated
by projection of the other independent degree of freedom.
If one of the pairs becomes accessible by an appropriate
experimental projection, the others are made inaccessible,
i.e., become “hidden,” even if present in the unprojected
field. (b) Entirely new questions arise from the recognition
of the triad of two-way coherences. We have shown that
each of the two-way coherences is accompanied by a
different complementarity. It is fascinating to ask whether
all 3 degrees of freedom can be treated together, none traced
or projected from consideration. This points to a com-
pletely new avenue of coherence study. We expect that our
results foretell a new three-way interpretation of coherence,
which will enlarge the meaning of complementarity itself.
Work in this direction is under way [24], with results to be
reported subsequently.
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