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A central challenge of physics is the computation of strongly correlated quantum systems. The past ten
years have witnessed the development and application of the variational calculation of the two-electron
reduced densitymatrix (2-RDM)without thewave function. In this Letter we present an orders-of-magnitude
improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The
advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T2 condition.
Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T2 condition
will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.
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Strong electron correlation in a quantum system occurs
when two or more electronic configurations contribute
significantly and nearly equally to its wave function [1–3].
In many physical systems, the number of orbitals partici-
pating in the strong correlation increases linearly with
system size, which causes the number of significant
electron configurations in the wave function to increase
exponentially. Approaches to strong correlation often
employ sophisticated parametrizations of the wave func-
tion, as in the Bardeen-Cooper-Schrieffer ansatz for super-
conductivity [4–6] and the general formalism of matrix
product states [7]. Notwithstanding, the complexity of
strongly correlated electrons can also be reduced by
exploiting the indistinguishability of the electrons together
with their pairwise interactions to express the ground-state
energy as a linear functional of only the two-electron
reduced density matrix (2-RDM) [8,9]. In a variational
calculation, the 2-RDM must be constrained to derive from
the integration of an N-electron density matrix; the con-
straints, known as N-representability conditions [10–15],
can be systematically arranged in a hierarchy where each
level of the hierarchy yields an increasingly tighter lower
bound on the ground-state energy. Applications of the
second level of the hierarchy to strongly correlated systems,
however, have been significantly limited by the computa-
tional complexity of the conditions. In this Letter the
computational cost of these conditions is dramatically
reduced through a dual formulation with rank reduction,
realizing more accurate and efficient 2-RDM calculations
of strongly correlated quantum systems.
The first level ofN-representability conditions, known as

the 2-positivity or DQG conditions [11,14–18], has been
applied to treat strong electron correlation in many molecu-
lar applications including the metal-to-insulator transition
in molecular chains [19–21], the emergence of polyradical
character in one- and two-dimensional polyaromatic hydro-
carbons [22–24], conical intersections and efficient energy

transfer in firefly bioluminescence [25], and the role of
entangled electrons in the reduction of a vanadium-oxo
transition-metal complex [26] as well as applications to
quantum dots [27] and phase transitions [28,29].
Nevertheless, the ground-state energy and the 2-RDM
from the DQG conditions can be significantly improved
by adding constraints from the second level of N-
representability conditions, known as the (2,3)-positivity
conditions, including the T1 and T2 conditions
[13,15,30,31]. Such an improvement has been observed
consistently in atoms and molecules [24,30–33] as well as
spin systems including the Erdahl [34,35], Hubbard
[36–39], Ising [29], and Lipkin [28] spin models. Unlike
theDQG conditions which have a computational scaling of
r4 and r6 in memory and floating-point operations where r
is the number of orbitals, the T1 and T2 conditions have a
computational scaling of r6 and r9, which severely restricts
their application to large r’s. In this Letter, through two
advances: (i) a dual formulation of the variational 2-RDM
method and (ii) a rank reduction exploiting the locality of
the Coulomb interaction, the T2 condition is implemented
with the same computational scaling as the DQG con-
ditions. Applications are made to hydrogen chains and a
newly discovered cadmium-selenide dimer that are not
treatable by conventional calculations of the wave function.
Because electrons are indistinguishable with pairwise

interactions, the energy as a function of the wave function

E½Ψ� ¼
Z

ĤΨð1; 2;…; NÞΨ�ð1̄; 2̄;…; N̄Þd1d2…dN

ð1Þ
can be replaced by the energy as a function of the 2-RDM
[1,2,8,9]

E½2D� ¼
Z

2K̂2Dð12; 1̄ 2̄Þd1d2; ð2Þ

where 2K̂ is the reduced Hamiltonian operator
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and

2Dð12; 1̄ 2̄Þ ¼
Z

Ψð1; 2;…; NÞΨ�ð1̄; 2̄;…; NÞd3…dN:

ð4Þ
The symbol Zk denotes the nuclear charge of the kth atom,
rik is the distance between the ith electron and thekth nucleus,
and r12 is the distance between electrons 1 and 2. An
N-electron density matrix must be (i) Hermitian, (ii) normal-
ized, (iii) antisymmetric upon exchange of a pair of electrons,
and (iv) positive semidefinite. The 2-RDM in Eq. (2) must
obey these fundamental requirements for a density matrix as
well as N-representability conditions that constrain the
2-RDM to represent an N-electron density matrix.
In a finite basis set of r spin orbitals, the variational

calculation of the ground-state energy as a 2-RDM func-
tional, constrained by the 2-positivity (DQG) conditions
[11,14–17], can be expressed as

min Trð2K 2DÞ; ð5Þ
such that 2D ≽ 0 ð6Þ

2Q ≽ 0 ð7Þ
2G ≽ 0 ð8Þ

Trð2DÞ ¼ 1; ð9Þ

in which the elements of the 2D, 2Q, and 2G matrices are
related by linear equations, 2K is the matrix representation of
the reduced Hamiltonian operator in Eq. (3), and M ≽ 0
indicates that the matrix M is constrained to be positive
semidefinite.Amatrix is positive semidefinite if and only if its
eigenvalues are non-negative. The D, Q, and G conditions
restrict the probability distributions of two particles, two
holes, and a particle-hole pair, respectively, to be non-
negative. A variational calculation of the 2-RDM with the
2-positivity (DQG) conditions can be solved by first-order
semidefinite programming [19,21] at a computational scaling
of r6 in floating-point operations and r4 in memory storage.
The lower bound on the ground-state energy from the

2-positivity conditions can be improved by adding con-
ditions from the (2,3)-positivity conditions such as the T1
and T2 conditions [13,15,30,31]. The T2 condition can be
expressed as

2T ≽ 0; ð10Þ
where

2Tijk
pqs ¼

Z
ð3Êijk

pqs þ 3F̂ijk
pqsÞ2Dð12; 1̄ 2̄Þd1d2; ð11Þ

with

3Êijk
pqs ¼ â†i â

†
j âkâ

†
s âqâp; ð12Þ

3F̂ijk
pqs ¼ â†s âqâpâ

†
i â

†
j âk: ð13Þ

The creation â†i and annihilation âi operators create and
annihilate an electron in the spin orbital i. The 3Ê and 3F̂
operators correspond to metric matrices that enforce non-
negativity of the probability distribution of two particles
and one hole and the probability distribution of two holes
and one particle, respectively. The sum of these two
operators, however, cancels the three-body terms, generat-
ing an operator whose expectation value depends only upon
the 2-RDM [15,31]. The T2 condition is more important
than the T1 condition because it represents the probability
distribution for a mixture of particles and holes. While the
T2 condition can be readily added to the DQG conditions
in the variational 2-RDM calculation in Eqs. (5)–(9), it has
a much higher computational cost. Derived by Erdahl [13],
the T2 condition was first implemented by Zhao et al. [30]
at a scaling of r12 in floating-point operations; shortly
thereafter, it was implemented by the author by first-order
semidefinite programing [31,32] at a scaling of r9 in
floating-point operations and r6 in storage.
Variational 2-RDM theory can also be expressed in a dual

(polar) formulation in which the optimization is performed
with respect to parameters in the N-representability con-
ditions. In a finite basis set of r spin orbitals, the ground-state
energy E is computable by solving the following dual
program:

maxE; such that Ĥ − E 2Î −
X
i

2Ôi ¼ 0; ð14Þ

where

Ĥ ¼
X
ijkl

2Kij
klâ

†
i â

†
j âlâk; ð15Þ

2Î ¼
X
ij

â†i â
†
j âjâi; ð16Þ

andZ
2Ôi

2Dð12; 1̄ 2̄Þd1d2 ≥ 0 ∀ 2Dð12; 1̄ 2̄Þ ∈ P2
N: ð17Þ

The P2
N denotes the set of N-representable 2-RDMs. As

the set of necessary N-representability conditions defined
by the 2Ôi operators is enlarged, the dual program converges
to an increasingly better lower bound on the ground-state
energy of the Hamiltonian Ĥ in the finite basis set. By
Kummer’s bipolar theorem [12], for an equivalent set of
N-representability conditions, the energy from the solution
of the dual program in Eqs. (14)–(17) equals the energy from
the primal solution in Eqs. (5)–(9). In the limit where a
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complete set of N-representability conditions is included,
the energy from the dual program converges to the exact
ground-state energy of Ĥ.
In the dual formulation, the 2-positivity (DQG) con-

ditions can be imposed by the following set of three linear
operators:

2ÔD ¼
X
ijkl

2Bij;kl
D â†i â

†
j âlâk; ð18Þ

2ÔQ ¼
X
ijkl

2Bij;kl
Q âiâjâ

†
l â

†
k; ð19Þ

2ÔG ¼
X
ijkl

2Bij;kl
G â†i âjâ

†
l âk; ð20Þ

where

2BD ≽ 0; ð21Þ
2BQ ≽ 0; ð22Þ
2BG ≽ 0: ð23Þ

In the dual formulation, the matrix elements of the
operators 2Ô are instead the variational parameters of
the 2-RDM elements. For N ¼ 2, only the operators
2ÔD are required to represent (Ĥ − E) with the ground-
state energy E, but for N > 2, additional operators such as
2ÔQ are required. Cances et al. previously implemented a
related dual formulation of the DQG conditions [40].
Similarly, the T2 condition can be added by the following
linear operator:

2ÔT2 ¼
X
ijkpqs

3Bijk;pqs
T2 ð3Êijk

pqs þ 3F̂ijk
pqsÞ; ð24Þ

where

3BT2 ≽ 0: ð25Þ
As discussed previously, the three-body operators in the
sum of the 3Ê and 3F̂ operators cancel, producing a two-
body operator. As written, the dual formulation of theDQG
and T2 conditions substituted into Eqs. (14)–(17) yields a
semidefinite program [19,21]. Without further modifica-
tion, first-order semidefinite programing can solve the dual
program of the DQG conditions or the dual program of the
DQG and T2 conditions at computational scalings similar
to the solutions of the primal programs in Eqs. (5)–(13).
The computational scaling of the T2 condition in the

dual formulation can be reduced by considering the
structure of the Hamiltonian in Eq. (15). For quantum
systems of electrons, both the energy and the interaction
term of the Hamiltonian scale linearly with system size.
Consequently, the number of operators in Eq. (14) that

describes the interaction must also scale linearly with
system size. Linear scaling of the G and T2 constraints
with system size can be restored by reducing the ranks of
the 2BG and 3BT2 matrices to scale linearly with r, known in
convex optimization as rank reduction [41,42]. If at the
solution the positive semidefinite matrices 2BG and 3BT2
have a low rank, then rank reduction does not affect the
final solution of the semidefinite program. The rank
reduction is imposed through a low-rank matrix factoriza-
tion [19,43–45]

2Bij;pq
G ¼

Xr

m

Cij
mCm

pq: ð26Þ

Rank reduction on 2BG decreases the computational cost of
the G condition in the dual formulation to r5 floating-point
operations and r3 storage. Furthermore, rank reduction of
3BT2 can be used to reduce the cost of the T2 condition to r6

floating-point operations and r4 storage, which is similar
to the scaling of the DQG conditions in the primal
program. A similar rank reduction can be performed for
the T1 condition.
To illustrate, we apply the dual formulation variational

2-RDM theory to a series of hydrogen chains as well as a
cadmium-selenide monomer and dimer. The ground-state
energy is computed subject to the DQG and DQG plus T2
(DQGT) conditions by solving the dual program in
Eqs. (14)–(17). Furthermore, we implement a rank-reduced
version of the DQGT conditions, denoted rDQGT, in
which the G and T2 conditions are rank reduced by low-
ranked factorization. The DQG, DQGT, and rDQGT
calculations use both spin and spatial symmetries [31].
The cadmium-selenide monomer and dimer are treated by
[6,12,24] complete active-space calculations with respect to
the Hartree-Fock orbitals. The notation ½X; Y� indicates that
X electrons in Y orbitals are correlated beyond the mean
field. Energies are compared with those from a full
configuration interaction (FCI) in the case of a hydrogen
chain and with complete-active-space configuration inter-
action (CASCI) [46] in the case of the cadmium-selenide
monomer.
Hydrogen chains exhibit a strongly correlated metal-to-

insulator transition as the hydrogen atoms are separated
equally [47]. Table I presents the correlation energies for a
series of hydrogen chains at 1.5 Å computed by DQG,
DQGT, and rDQGT and compared with FCI. The corre-
lation energy at 1.5 Å is difficult to describe because the
chain is in the middle of the metal-to-insulator transition
after the onset of strong electron correlation. At 1.5 Å,
single-reference methods such as coupled cluster single-
double and parametric 2-RDM methods either fail to
converge or yield unphysical results [19–21]. The most
important result in Table I is that the energies from rDQGT
are within 0.000 01 a.u. of the energies from DQGT. The
rDQGT and DQGT energies are in equally good agree-
ment at other bond lengths. Second, the rDQGT energies
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significantly improve upon those fromDQG, with minimal
differences in both memory storage and floating-point
operations. For example, for H4 the energy from DQG
is −0.005 a:u: below FCI, while the energies from DQGT
and rDQGT are exact; for H30 the rDQGT energy is above
theDQG energy by more than 0.116 a.u. Both rDQGT and
DQG have similar numbers of variables, and the relative
timings of the rDQGT calculations range from 2 times
faster to 2-to-3 times slower than the DQG calculations.
Finally, while FCI calculations are not possible for H20 or
H30, where they would require computing with 24 × 109

and 36 quadrillion (1017) variables, respectively, bothDQG
and rDQGT are applicable, requiring, in the case of H20,
fewer than 800 000 variables and, in the case of H30, fewer
than 4 × 106 variables.
Talapin and co-workers [48,49] recently showed that the

photovoltaic efficiency of nanocrystalline arrays can be
significantly improved with the addition of Na2Cd2Se3.
X-ray crystallography reveals that the Cd2Se−23 anions
polymerize to form dimers and longer polymers that act
as electronic “glue” between nanoparticles, enhancing
conductivity through the array. Figure 1 shows the crys-
tallographic structure of the dimer [49]. Eigenvalues of
the 1-RDM, known as natural occupation numbers, from

2-RDM calculations with DQG conditions reveal that the
monomer and the dimer are strongly correlated. The
observation of strong correlation is consistent with their
experimental role as conductors [48,49]. Here, we present
dual calculations of the correlation energies with theDQG,
DQGT, and rDQGT conditions where the monomer and
the dimer are treated in [6,12] and [12,24] active spaces.
The number of variables required by the calculations,

presented in Table II, shows that rDQGT reduces the
number of variables from DQGT by 2 orders of magnitude
for the monomer and 2.5 orders of magnitude for the dimer.
Furthermore, the rDQGT calculations require slightly
fewer variables than the DQG calculations for both the
monomer and the dimer. While rDQGT and CASCI have
relatively similar numbers of variables for the monomer,
CASCI of the dimer, if possible, would require 7 trillion
variables. Correlation energies are shown in Table III. For
the monomer the rDQGT energy is only 0.000 02 a.u.
below the DQGT energy. As in the hydrogen chains,
the rDQGT energies significantly improve upon the DQG
energies. Although the presented calculations are per-
formed in a minimal basis set without counterions, we
observe that, while the Hartree-Fock energies do not predict
binding, the addition of the electron correlation energy is
sufficient to stabilize the dimer relative to two monomers.
Strongly correlated quantum systems from molecules to

spin systems like the Hubbard and Erdahl models have
been accurately treated by the variational 2-RDM calcu-
lations with the T2 N-representability condition. However,
the computational cost of the T2 condition has limited its
application to treat strong electron correlation in larger
systems. In this Letter a dramatic reduction in the computa-
tional scaling of the T2 condition is presented through a
low-rank dual formulation where the rank reduction is
based on the locality of the Hamiltonian interaction. We
observe in computations on both hydrogen chains and a
cadmium-selenide dimer that the rank reduction does not
affect the accuracy of the computed energies. The maxi-
mum error for the rank reduction is 2 × 10−5 a:u. Future
extensions of the present work will (i) improve the
efficiency of the implementation (the current version was
largely written in an interpretive language rather than a

TABLE I. Correlation energies for a series of hydrogen chains
at 1.5 Å are presented from variational 2-RDM calculations with
DQG, DQGT, and rDQGT (rank-reduced) constraints as well as
FCI. FCI calculations are not possible for H20 or H30, requiring
24 × 109 and 36 quadrillion (1017) variables, but both DQG and
rDQGT are applicable, requiring 800 000 and 4 × 106 variables,
respectively. The rDQGT energies are within 0.000 01 a.u. of the
DQGT energies.

Energy (a.u.) Correlation energy (a.u.)

Molecule Hartree-Fock DQG DQGT rDQGT FCI

H4 −1.844789 −0.17283 −0.16789 −0.16789 −0.16789
H6 −2.773389 −0.26061 −0.24789 −0.24789 −0.24681
H8 −3.702789 −0.34998 −0.32867 −0.32867 −0.32536
H10 −4.632486 −0.43991 −0.40984 −0.40985 −0.40381
H20 −9.281963 −0.89174 ��� −0.81817 ���
H30 −13.931658 −1.34454 ��� −1.22793 � � �

FIG. 1. The crystallographic structure of the ðCd2Se−23 Þ2 dimer
is displayed.

TABLE II. The numbers of variables in the 2-RDM and FCI
calculations are shown. Rank reduction in the dual formulation
(rDQGT) reduces the number of variables from DQGT by 2
orders of magnitude for the monomer and 2.5 orders of
magnitude for the dimer. Furthermore, the rDQGT calculations
require slightly fewer variables than the DQG calculations for
both the monomer and the dimer.

Number of variables

Molecule DQG DQGT rDQGT FCI

Cd2Se−23 1.8 × 105 1.4 × 107 1.5 × 105 8.5 × 105

Cd4Se−46 3.0 × 106 9.3 × 108 2.4 × 106 7.3 × 1012
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compiled language) and (ii) compute the 2-RDM from
the dual solution. The present work also provides an
efficient dual framework for the addition of constraints
beyond T2 from the hierarchy of N-representability con-
ditions of Ref. [15]. The dual description has had an
important role in 2-RDM theory in the development of
both N-representability conditions [1,2,11–13,15,34] and
semidefinite programming algorithms [16,19,21,30,40,50].
Here, the dual description, in combination with rank
reduction, has been applied to enhancing the efficiency
of the T2 condition. The low-scaling T2 condition in
variational 2-RDM theory will become a standard tool
for the accurate treatment of strong electron correlation,
with applications to molecular quantum systems through-
out physics and chemistry.
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