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We introduce a completely local subtraction method for fully differential predictions at next-to-next-to-
leading order (NNLO) accuracy for jet cross sections and use it to compute event shapes in three-jet
production in electron-positron collisions. We validate our method on two event shapes, thrust and C
parameter, which are already known in the literature at NNLO accuracy and compute for the first time
oblateness and the energy-energy correlation at the same accuracy.
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One of the most important fundamental parameters in the
standard model is the strong coupling αs. A clean envi-
ronment for determining αs is the study of event shape
distributions in eþe− collisions [1]. Indeed, while at leading
order (LO) the production of two jets is a purely electro-
weak process, the dominant contribution to the production
rate of every additional jet in the final state is directly
proportional to the strong coupling. Since the initial state
does not involve colored partons, nonperturbative QCD
corrections are restricted to hadronization and power
corrections affecting the final state configuration. These
corrections can be determined either by extracting them
from data by comparison to Monte Carlo predictions or by
using analytic models. The precision of the theoretical
predictions is thus mostly limited by the accuracy in the
perturbative expansion in the strong coupling. Currently,
the state of the art includes next-to-leading order (NLO)
predictions for the production of up to five jets [2–4] (and
up to seven jets in the leading color approximation [5]), and
next-to-next-to-leading order (NNLO) predictions for the
production of three jets [6,7]. Moreover, fixed-order pre-
dictions can be matched to resummation calculations (see
examples in Ref. [8]), which take into account classes of
logarithmically enhanced contributions to all orders in
perturbation theory.
The goal of this Letter is twofold. First, we present a

framework to compute fully differential predictions at
NNLO accuracy for processes with a colorless initial state
and involving any number of colored massless particles in
the final state. Second, we apply our method to event shape

observables with at least three hard final-state partons. As
our framework allows for a fully differential description of
the final state, it puts no restriction beyond infrared safety
on the class of observables that we can consider. The
cornerstone of our framework is the completely local
subtractions for fully differential predictions at next-to-
next-to-leading order (CoLoRFulNNLO) method to regu-
larize infrared divergences [9]. The method is based on the
universal factorization of QCD matrix elements in soft and
collinear limits. It takes into account all spin and color-
correlations among the final-state particles and as a result
the subtractions are completely local.
Predictions at NNLO in perturbative QCD generically

require the computation of two-loop corrections to the Born
process, as well as one-loop and tree-level contributions to
the processes with one or two additional partons in the final
state. The two-loop matrix elements for γ�=Z → qq̄g have
been computed in Ref. [10]. The one-loop corrections to
four-jet production have been computed in Ref. [11], and
the tree-level matrix elements for the production of five jets
were obtained for first time in Ref. [12]. The sum of these
contributions is finite for infrared-safe observables, but
taken separately, they all exhibit explicit divergences
coming from loop integrations and/or implicit divergences
when one or more partons in the final state are unresolved.
Thus each contribution needs to be separately rendered
finite in four dimensions before any numerical computation
can be performed.
The CoLoRFulNNLO method deals with this issue by

using universal counterterms to redistribute divergences
between different final-state multiplicities. In every singu-
lar region of phase space we subtract the corresponding
infrared divergence through a suitably constructed approxi-
mate matrix element. As different singular regions overlap,
a careful bookkeeping is required in order to avoid double
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counting when subtracting the divergences. Moreover,
within our framework beyond NLO, we also need to
consider iterated singular limits where partons become
successively unresolved. Finally, spin correlations in gluon
decay are retained, and the counterterms are fully local in
phase space. In the CoLoRFulNNLO framework the
distribution of the NNLO correction to an observable J
can be written as a sum of three contributions, each being
separately finite in d ¼ 4 dimensions,

σNNLO½J� ¼
Z
mþ2

dσNNLOmþ2 þ
Z
mþ1

dσNNLOmþ1 þ
Z
m
dσNNLOm ;

ð1Þ
where

dσNNLOmþ2 ¼ fdσRRmþ2Jmþ2 − dσRR;A2

mþ2 Jm
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dσNNLOmþ1 ¼
��

dσRVmþ1 þ
Z
1

dσRR;A1

mþ2

�
Jmþ1

−
�
dσRV;A1

mþ1 þ
�Z

1

dσRR;A1

mþ2

�
A1

�
Jm

�
d¼4

; ð3Þ

dσNNLOm ¼
�
dσVVm þ

Z
2

½dσRR;A2

mþ2 −dσRR;A12

mþ2 �

þ
Z
1

�
dσRV;A1

mþ1 þ
�Z

1

dσRR;A1

mþ2

�
A1

��
d¼4

Jm: ð4Þ

Jn denotes the value of the infrared-safe observable J
evaluated on a final state with n resolved partons. The
various subtraction terms have been defined explicitly and
their integrals over the factorized phase space of the
unresolved partons have been obtained in Ref. [9].
Equation (2) includes the double-real (RR) contribution

that exhibits singularities whenever one or two partons
become unresolved. We subtract from this an approximate
cross section dσRR;A2

mþ2 which has the same singularities in
the doubly unresolved limits as the RR matrix element.
The difference is still singular in singly unresolved regions
and an additional counterterm is needed. To that effect, we
subtract the quantity dσRR;A1

mþ2 , and compensate for the
overlap between the singly and doubly unresolved regions
through the term dσRR;A12

mþ2 .
Similarly, Eq. (3) describes the emission of one addi-

tional parton at one loop, the real-virtual (RV) contribution.
In addition to explicit infrared poles coming from the
loop integration, the RV contribution has kinematic singu-
larities when this additional parton is soft or collinear to
another colored particle. These are regularized by the
approximate one-loop cross section dσRV;A1

mþ1 . The difference
is now free of implicit singularities, but the explicit infrared

singularities are still present. These poles are the same as
the singly unresolved singularities in dσRR;A1

mþ2 in integrated
form, and they cancel once the corresponding term is added
back. The integral of dσRR;A1

mþ2 , however, still has one-parton
singularities, which are regularized by the last term in
Eq. (3).
The last contribution to the NNLO distribution, shown in

Eq. (4), includes two-loop virtual (VV) corrections to the
LO process. The two-loop integrations lead to explicit
infrared singularities. In Eqs. (2) and (3) we had introduced
five counterterms, but so far only dσRR;A1

mþ2 has been added
back in integrated form. The explicit two-loop singularities
cancel against the phase-space singularities of the remain-
ing four counterterms, which are shown explicitly in
integrated forms in Eq. (4). We computed all terms in
these integrated forms that become singular in d ¼ 4
dimensions and demonstrated the cancellation of these
divergences analytically. We also computed analytically the
logarithmic terms in the finite part of the integrated
subtractions that become singular on the edges of the
phase space, while we evaluated the rest of the finite part of
the integrated subtractions numerically. We add the uncer-
tainty of these numerical evaluations to the uncertainty of
the Monte Carlo integration of the n-parton integrations in
Eq. (1) in quadrature.
CoLoRFulNNLO has already been successfully applied

to compute NNLO corrections to differential distributions
describing the decay of a Higgs boson into a pair of b
quarks [13]. Here we apply this framework for the first time
to the computation of NNLO observables with more than
two colored partons in the final state. In particular, we
consider event-shape observables in eþe− → γ� → 3 jets
and we study NNLO corrections to them. If O denotes a
generic event shape observable, we write

1

σ0

dσ
dO

¼ αs
2π

AðOÞ þ
�
αs
2π

�
2

BðOÞ þ
�
αs
2π

�
3

CðOÞ þOðα4sÞ;

ð5Þ

where σ0 is the leading-order prediction for the process
eþe− → hadrons in perturbation theory. In this Letter we
concentrate on four event shapes. The first two, thrust
[14,15] and C parameter [16,17], have already been studied
at NNLO accuracy [6,7] and serve as a validation of our
method. The other two, oblateness and energy-energy
correlation, have never been presented at NNLO accuracy
and constitute our main phenomenological results. Thrust is
defined as

T ¼ max
~n

�P
ij~n · ~pijP
ij~pij

�
; ð6Þ

where ~pi denote the three-momenta of the partons and ~n
defines the direction of the thrust axis, ~nT , by maximizing
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the sum on the right-hand side over all directions of the
final-state particles. In order to define oblateness, we need
two variants of this definition, thrust major and thrust
minor. Thrust major is given by

TM ¼ max
~n·~nT¼0

�P
ij~n · ~pijP
ij~pij

�
; ð7Þ

where ~n defines the direction of the thrust-major axis, ~nTM
,

by maximizing the sum on the right-hand side over all
directions orthogonal to the thrust axis. Similarly,

Tm ¼
P

ij~nTm
· ~pijP

ij~pij
; with ~nTm

¼ ~nT × ~nTM
; ð8Þ

defines thrust minor, where the thrust-minor axis, ~nTm
, is

orthogonal to both the thrust and thrust-major axes.
Oblateness O is then the difference of thrust major and
thrust minor [18],

O ¼ TM − Tm: ð9Þ
The value of the C parameter for massless final-state

particles is

Cpar ¼
3

2

P
i;jj~pijj~pjjsin2θij
ðPij~pijÞ2

; ð10Þ

where θij is the angle between ~pi and ~pj.
Finally, energy-energy correlation [19] is the normalized

energy-weighted cross section defined in terms of the angle
between two particles i and j in an event,

EECðχÞ ¼ 1

σhad

X
i;j

Z
EiEj

Q2
dσeþe−→ijþXδðcos χ þ cos θijÞ;

ð11Þ
where Q2 is the squared center-of-mass energy, Ei and Ej

are the particle energies, θij ¼ π − χ is the angle between
the two particles, and σhad is the total hadronic cross
section. Experience shows that computing radiative cor-
rections to the distributions of C parameter, oblateness, and
energy-energy correlations is numerically more challeng-
ing than for other three-jet event shapes.
As a validation of our method, we show in Figs. 1 and 2

the third-order coefficient in Eq. (5) forO ¼ τ≡ 1 − T and
O ¼ Cpar. We observe a very good numerical convergence
of our method at NNLO: the absolute uncertainties of the
integrations are shown as shaded narrow bands around
the solid line on the upper panels (hardly visible) and the
relative ones around the lines at one on the lower panels of
Figs. 1 and 2. We compare our results to the predictions of
Refs. [6,7] and we find agreement over a large range of τ
and C parameter. As the predictions published in Ref. [7]
are affected by an issue with the generation of phase space
in the code used to compute those results [20], we make

comparisons to updated but unpublished results provided to
us by S. Weinzierl. We observe statistically significant
differences beyond the kinematical limits (τ ¼ 1=3 and
Cpar ¼ 3=4) where the three-particle final states vanish and
the event shapes are determined by a four-jet final state. In
these regions the CðOÞ coefficients are determined by the
NLO corrections to four-jet production, which have been
known for a long time [2,3] and can also be computed with
modern automated tools, such as MadGraph5_aMC@NLO
[21]. We have checked that our predictions are in
complete agreement with those of Ref. [3] for the C
parameter and also with MadGraph5_aMC@NLO for both

FIG. 1. The NNLO coefficient of the weighted τ ¼ 1 − T
distribution. The lower panels show the predictions of Ref. [7],
denoted as SW, (middle panel) and those of Ref. [6], denoted as
GGGH, (lower panel) normalized to ours, as well as the relative
uncertainties of the numerical integrations (shaded band around
the line at one). Also shown in the middle panel are the
predictions of MadGraph5_aMC@NLO, denoted as MG5,
for τ > 1=3.

FIG. 2. The same as Fig. 1 for the C parameter, with the middle
panel showing also the predictions of Ref. [3], denoted as NT, for
Cpar > 3=4.
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thrust and C parameter. This can be seen on the middle
panels of Figs. 1 and 2 where we show the results of
MadGraph5_aMC@NLO for τ > 1=3 and those of Ref. [3]
for Cpar > 3=4 normalized to ours.
We present predictions for the distributions of oblateness

O and energy-energy correlation EEC at NNLO accuracy

in perturbative QCD for collider energy
ffiffiffiffiffiffi
Q2

p
¼ 91.2 GeV

in Figs. 3 and 4. The bands represent the dependence of the
predictions on the renormalization scale varied in the range
[0.5, 2] times our default scale: the total center-of-mass
energy. We use αs ¼ 0.118 for the central value and the
three-loop running of the strong coupling for computing the
scale variations. The lower panels show the relative scale
dependence of the NNLO predictions and the relative
uncertainties of the integrations. Both oblateness and
energy-energy correlation are known to vanish in the dijet
limit. Moreover, oblateness is expected to vanish also for

cylindrically symmetric final states, while for three-parton
events one has 0 ≤ O ≤ 1=

ffiffiffi
3

p
. Indications of these features

are visible in Figs. 3 and 4.
We observe that the NNLO corrections slightly lower,

and also slightly modify the shape of the O distribution
compared to NLO, while the NNLO corrections enhance
the EEC distribution almost uniformly. The changes in the
shapes of the distributions due to the NNLO corrections can
be appreciated better by looking at the distributions of the
NNLO coefficients directly, as shown in Figs. 5 and 6. Also
for these distributions, we observe good numerical con-
vergence of our code.
We conclude by commenting on the behavior of the

distributions corresponding to small values of the event
shapes. Those regions are dominated by kinematical
configurations where one of the three partons is unresolved,
resulting in logarithmically enhanced contributions. In
order to obtain reliable predictions the large logarithms
must be resummed to all orders in perturbation theory,
which is beyond the scope of the present study.
In this Letter we have introduced the CoLoRFulNNLO

method to compute NNLO radiative corrections for proc-
esses with colorless initial states. We have applied it to
obtain precise predictions for event shape distributions in
three-jet production in eþe− collisions. We observe very
good numerical convergence of our predictions over the
whole range of values of the event shapes. We emphasize

FIG. 4. Distributions of energy-energy correlation EEC at LO,
NLO, and NNLO accuracy in perturbative QCD. The bands and
the lower panel are like in Fig. 3.

FIG. 3. Weighted distributions of oblateness O at LO, NLO,
and NNLO accuracy in perturbative QCD. The bands represent
the dependence on the renormalization scale varied in the range

ξR ≡ μ=μ0 ∈ ½0.5; 2� around the default scale μ0 ¼
ffiffiffiffiffiffi
Q2

p
. The

lower panel shows the relative scale dependence (band) at
NNLO accuracy and the relative uncertainty of the integrations
(error bars).

FIG. 5. Distribution of the NNLO coefficient for oblateness O.
The error bars represent the statistical uncertainty of the
Monte Carlo integrations.

FIG. 6. Same as Fig. 5 for energy-energy correlation.
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that our framework is not restricted to three-jet production,
but it can be easily extended to study differential distribu-
tions for four or more jet production once the correspond-
ing two-loop amplitudes become available. Finally, it will
be interesting to study the effects of power corrections and
hadronization on our results and to compare the NNLO
distributions of O and EEC to data, thereby providing new
observables from which the value of the strong coupling αs
can be extracted to NNLO accuracy.
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