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We investigate novel transport phenomena in a chiral fluid originated from an interplay between a
vorticity and strong magnetic field, which induces a redistribution of vector charges in the system and an
axial current along the magnetic field. The corresponding transport coefficients are obtained from an
energy-shift argument for the chiral fermions in the lowest Landau level due to a spin-vorticity coupling
and also from diagrammatic computations on the basis of the linear response theory. Based on consistent
results from both methods, we observe that the transport coefficients are proportional to the anomaly
coefficient and are independent of temperature and chemical potential. We therefore speculate that these
transport phenomena are connected to quantum anomaly.

DOI: 10.1103/PhysRevLett.117.152002

Introduction.—A number of intensive and extensive
studies have shown that the dynamics of chiral fermions
in various systems manifests itself in anomalous transport
phenomena induced by the quantum anomaly. The broad
set of such systems includes the primordial electroweak
plasma in the early Universe [1], the QCD matter created in
the relativistic heavy-ion collisions [2], and newly invented
condensed matter systems—Weyl and Dirac semimetals
[3,4] (see also Refs. [5–7] for recent reviews).
One prominent example of such anomalous transport

phenomena is known as the chiral magnetic effect (CME)
[8,9], that is, an induction of a vector (electric) current in
response to a magnetic field B. In the presence of a chirality
imbalance quantified by the axial chemical potential μA, the
vector current is induced along B as

jV;CME ¼ qfCAμAB; ð1Þ

where qf is the electric charge of the chiral fermion and
CA ¼ 1=2π2 is the nonrenormalizable coefficient character-
izing the chiral anomaly relation

∂μj
μ
A ¼ q2fCAE · B: ð2Þ

The CME current has been investigated by various theories
and methods that consistently confirm Eq. (1) (see
Refs. [5,9] for reviews). This indicates the universality
of CME attributed to the topological nature of the chiral
anomaly.
It is also known that the magnetic field induces not only

the vector current but also an axial current. Namely, the
chiral separation effect (CSE) [10] emerges in the presence
of a vector chemical potential μV as

jA;CSE ¼ qfCAμVB: ð3Þ

A vorticity in a chiral fluid plays a similar role as that of
the magnetic field, and hence induces anomalous vector
and axial currents—this is referred to as the chiral vortical
effect (CVE) [2,11–13]. The CME and CVE have been
understood on equal footing within the framework of
anomalous hydrodynamics from the second law of thermo-
dynamics [14].
It should be emphasized that the above studies are devoted

to the separate effects of the magnetic field B or the vorticity
ω. In thepioneeringhydrodynamicanalysiswith theanomaly
[14], both vorticity and magnetic field are accounted as
the first order in the gradient expansion. Consequently, the
coupling betweenB andω is dropped as a higher-order effect
in that systematic framework. However, in the context of
magnetohydrodynamics, themagnetic field is not screened in
a medium, and its strength can be much larger than the
gradients, suggesting the importance of going beyond the
conventional gradient expansion.
In this Letter, we will show that the interplay between the

vorticity and strong magnetic field induces a local vector-
charge density

Δj0V ¼ qf
CA

2
ðB · ωÞ; ð4Þ

where the vorticity is defined by ω ¼ 1
2
∇ × v. Below,

Eq. (4) will be consistently derived both from an analysis
of the energy shift by a spin-vorticity coupling in the lowest
Landau level (LLL) and from a diagrammatic computation
on the basis of the Kubo formula. Remarkably, Δj0V in
Eq. (4) is proportional to anomaly coefficient CA, and does
not depend on temperature and chemical potential. This
suggests a connection to the underlying quantum anomaly,
as discussed below.
It is worth pointing out that Eq. (4) does not create a

globe vector charge; i.e.,
R
d3xΔj0V ¼ 0. This can be seen
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as
R
d3xB ·ω¼ 1

2

R
d3x∇ ·ðv×BÞ¼ 1

2

R
∂V dS ·ðv×BÞ¼0 for

a homogenous magnetic field B. As usual, we assume that
the flow velocity v vanishes sufficiently fast at the asymp-
totic region. Therefore, Eq. (4) indicates a redistribution of
the vector charge in the system. In general, due to the
inherent inhomogeneity of the vorticity, Eq. (4) will induce
intriguing charge distribution patterns in a chiral
fluid.
We will also show that, accompanying the induction of

the local vector-charge imbalance Eq. (4), a new contri-
bution to the axial current emerges as

ΔjA ¼ jqfj
CA

2
ðB · ωÞB̂; ð5Þ

where B̂ ¼ B=jBj is the unit vector along the magnetic
field. This is an analogue of CSE Eq. (3) induced by the
imbalance of vector charge μV . Here, it is remarkable that
the axial current is dynamically generated without an initial
finite value of μV .
The generation of the vector-charge density in chiral

media is also discussed in condensed matter physics on the
basis of the realization of an effective axial gauge field
[15,16]. However, to the best of our knowledge, Eqs. (4)
and (5) are new in the literature. Since the vorticity is one of
the most important dynamical variables in magnetohydro-
dynamics, its coupling to the strong magnetic field,
indicated by Eqs. (4) and (5), should be incorporated in
anomalous magnetohydrodynamics [see also Eq. (21)].
Results reported in this Letter clearly open a new avenue
for studying the intriguing interplay occurring in a wide
variety of chiral media in strong magnetic fields.
Physical picture.—Prior to performing an explicit dia-

grammatic analysis, we first provide a physical picture as
to why the vorticity would induce a local vector-charge
density when coupled to a magnetic field.
We shall consider chiral fermions in the presence of a

static and homogeneous magnetic field B. The energy
spectra of chiral fermions are discretized into the Landau
levels (LLs). We next turn on a slowly varying velocity
field v which leads to a nonzero vorticity, ω ¼ 1

2
∇ × v.

After a sufficiently long time, each fluid cell reaches a local
equilibrium with the single-particle distribution function
given by fðϵ;ωÞ ¼ f0ðϵ0Þ, where f0 denotes the equilib-
rium distribution function. Our key observation is that the
vorticity shifts the single-particle energy from ϵ to ϵ0 by
an amount Δϵ≡ ϵ0 − ϵ ¼ −S · ω. Here, S is the intrinsic
angular momentum (spin) carried by fermions. Such an
energy shift due to the spin-vorticity coupling can be
derived by observing the shift of the single-particle
Hamiltonian in a rotating frame [17]. The energy shift
also naturally arises in the equilibrium fermion distribution
by computing the distribution function which maximizes
the entropy [11,18] or by working out a constraint imposed
by the detailed balance [19]. In the every higher LL, the
spin-vorticity coupling splits the degenerated spin states

into the opposite directions, so that these effects cancel at
the linear order inω when averaging over the spin. We will,
therefore, concentrate on the unique grand state, i.e., the
lowest Landau level.
In the LLL, the spin directions of both right- and left-

handed particles are frozen in the same direction along the
magnetic field SR=L ¼ 1

2
sgnðqfÞB̂, and those of antipar-

ticles are oriented in the opposite direction. Consequently,
the energy shift in the LLL has no dependence on the
chirality and is given by

Δϵ�LLL ¼∓ 1

2
sgnðqfÞB̂ · ω; ð6Þ

where the upper and lower signs refer to a particle and
antiparticle, respectively. Below, we take B ¼ Bê3 without
loss of generality.
We are now ready to compute the change of the density

of chiral fermions nR=L due to the vorticity. As explained
above, we only need to consider the contributions from the
LLLs where the fermion dynamics is reduced to the (1þ 1)
dimensional one along B. Expanding f0ðϵ0Þ up to the linear
order in Δϵ, and using the linear dispersion relation of the
right-handed LLL fermion, i.e., ϵLLL ¼ þp3, we find

ΔnR ¼
�jqfBj

2π

��
ΔϵþLLL

Z
∞

0

dp3

2π

∂f0ðp3Þ
∂p3

þ Δϵ−LLL

Z
0

−∞

dp3

2π

∂f̄0ðp3Þ
∂p3

�

¼ qf
CA

4
ðB · ωÞ½f0ð0Þ þ f̄0ð0Þ�

¼ qf
CA

4
ðB · ωÞ: ð7Þ

Here, the factor of jqfBj=2π is the density of states in the
LLL per unit transverse area. The Fermi-Dirac distribution
functions of particles and antiparticles are given by f0ðϵÞ¼
1=½eðϵ−μÞ=Tþ1� and f̄0ðϵÞ¼1=½e−ðϵ−μÞ=Tþ1�, respectively.
We have used the fact that f0ð∞Þ ¼ f̄0ð−∞Þ ¼ 0.
Remarkably, one finds an identity f0ð0Þ þ f̄0ð0Þ ¼ 1,
which is independent of temperature T and chemical
potential μ. Consequently, the last line in Eq. (7) is also
independent of T and μ. For the left-handed fermions with
ϵLLL ¼ −p3, a similar computation leads to ΔnL ¼ ΔnR.
Therefore, we find ΔnV ¼ ΔnL þ ΔnR ¼ qfCAðB · ωÞ=2.
This is the aforementioned result shown in Eq. (4).
Furthermore, since the chiral fermions in the LLL are

moving along ê3 with the speed of light, the generation
of ΔnR;L also induces currents Δj3R ¼ sgnðSRÞΔnR and
Δj3L ¼ −sgnðSLÞΔnL. Therefore, from Eq. (7), we find an
axial current Δj3A ¼ Δj3R − Δj3L ¼ jqfjCAðB · ωÞB̂=2. This
verifies Eq. (5). On the other hand, the vector current
vanishes, Δj3V ¼ Δj3R þ Δj3L ¼ 0. Alternatively, one might
also interpret the amount of the energy shift Eq. (6) as an
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effective chemical potential ΔμR;L ¼ −ΔϵþLLL (see also
Ref. [20] for a discussion on the analogy between rotating
and charge density). Plugging the effective vector chemical
potential, ΔμV ¼ ðΔμR þ ΔμLÞ=2 ¼ sgnðqfÞω · B̂, into
the CSE current Eq. (3), we again find the generation of the
axial current Eq. (5) along the magnetic field. Note that the
sign of the axial current depends only on the direction of
the vorticity and is independent of that of the magnetic
field.
Importantly, since Eq. (7) and thus Eq. (4) manifestly

depend on the anomaly coefficient CA, but neither T nor μ,
it is natural to speculate that the form of Eq. (4) is
nonrenormalizable and is tied to the chiral anomaly.
Below, we will verify Eqs. (4) and (5) by an explicit
field-theoretical computation and provide further evidence
on the connection to the quantum anomaly.
Diagrammatical computations.—We now perform

the field-theoretical computation. We will consider the
response of the chiral medium to the vorticity ω in the
presence of external magnetic field. An inhomogeneous
velocity field vðxÞ may be mimicked by turning on a
fictitious gravitational field, ds2 ¼ dt2 þ 2vdxdt − dx2,
i.e., g0iðxÞ ¼ δijvjðxÞ. Therefore, the Fourier representa-
tion of Eq. (4) is cast into

j0V ¼ λ

2
ϵljkB̂lðiqjÞg0k; ð8Þ

where we used ω ¼ 1
2
∇ × v, and λ is the transport coef-

ficient to be computed below.We again take the direction of
the magnetic field to be B ¼ Bê3 and specify an inhomo-
geneous velocity profile as v ¼ vðx1Þê2 or, equivalently, an
inhomogeneous perturbation of the metric as δg02ðx1Þ.
Inverting Eq. (8), we find the Kubo formula,

λ ¼ ð−2iÞlim
q→0

�
lim
ω→0

∂
∂q1 G

0;02
R ðω; qÞ

�
; ð9Þ

with the retarded Green’s function (see Fig. 1):

G0;02
R ðx − x0Þ≡ hj0VðxÞT02ðx0Þiθðt − t0Þ: ð10Þ

A similar Kubo formula was used to study the CVE without
an external magnetic field in Ref. [21].
We now evaluate the Green’s function Eq. (10) in a weak

coupling theory. The vector current and energy-momentum
tensor of Dirac fermions are given by

jμVðxÞ≡ Ψ̄ðxÞγμΨðxÞ; ð11aÞ

T0iðxÞ≡ i
2
Ψ̄ðxÞðγ0Di þ γiD0ÞΨðxÞ; ð11bÞ

where gμν ¼ diagð1;−1;−1;−1Þ and γ5 ≡ iγ0γ1γ2γ3. The
covariant derivative Dμ ¼ ∂μ þ iqfA

μ
extðxÞ includes the

gauge potential Aμ
extðxÞ for the magnetic field B.

We consider the one-loop diagram composed of the
dressed Fermion propagators in the external magnetic field.
Below, we will restrict ourselves to the contributions from
the lowest Landau levels. This is because the anomalous
currents, such as the CME current, are solely transported by
the fermions populated in the LLL. We therefore project
the fermion wave function into the LLL: Ψ ¼ PþψLLL,
with ψLLL, and P� ¼ ð1� isfγ1γ2Þ=2 being the
LLL wave function and the spin-projection operator with
sf ≡ sgnðqfBÞ, respectively.
The coordinate representation of the retarded Green

function Eq. (10) is written as (cf. Fig. 1)

G0;02
R ðx − x0Þ ¼ 1

2i
trfγ0PþSLLLðx; x0Þγ0½D2

x0SLLLðx0; xÞ�g;
ð12Þ

wherewe have used the fact that the second term of Eq. (11b)
vanishes for the transverse components (i ¼ 1, 2), when the
wave function is projected to the LLL. Here, SLLLðx0; xÞ ¼
hψLLLðx0Þψ̄LLLðxÞi symbolically represents the LLL propa-
gator in the medium and is factorized as [6,22]

SLLLðx0; xÞ ¼ eiϕðx0;xÞ ~SLLLðx0 − xÞ; ð13Þ
where the Schwinger phase is given by

ϕðx0; xÞ ¼ −qf
Z

x0

x
dzμ

�
Aext
μ ðzÞ þ 1

2
Fext
μν ðzν − xνÞ

�
; ð14Þ

with Fext
μν ¼ ∂μAext

ν − ∂νAext
μ . The above integrand is

curl free, and, hence, the integral is path independent.
Therefore, a straightforward calculation givesDμ

x0ϕðx0; xÞ ¼
ϕðx0; xÞf∂μ

x0 − iqfF
μν
extΔxν=2g, where Δxμ ¼ x0μ − xμ.

Consequently, the Schwinger phases in Eq. (12) cancel each
other as ϕðx; x0Þ þ ϕðx0; xÞ ¼ 0. The remaining parts then
depend only on the differenceΔxμ and are independent of the
gauge potential, indicating the manifest translational and
gauge invariances.
With these manifest symmetries, we are now ready to

transform Eq. (12) into the Fourier space:

G0;02
R ðqÞ ¼

Z
d4p
ð2πÞ4 tr

�
γ0Pþ ~SLLLðpþ qÞ

×

�
p2 þ isf

jqfBj
2

∂
∂p1

�
γ0 ~SLLLðpÞ

�
: ð15Þ

Note that ~SLLL is completely factorized into the transverse
and longitudinal parts as [6,23]

FIG. 1. One-loop diagram for the Kubo formula. The internal
double lines represent the fermions in the LLL.
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~SLLLðp∥; p⊥Þ ¼ 2e−jp⊥j2=jqfBjS1þ1ðp∥Þ; ð16Þ

where pμ
∥ ¼ ðp0; 0; 0; p3Þ and pμ

⊥ ¼ ð0; p1; p2; 0Þ. This of
course is anticipated from the dimensional reduction in
the LLL. The longitudinal part S1þ1ðp∥Þ is the (1þ 1)-
dimensional fermion propagator in a medium. At this
moment, its explicit form is not important. The integration
over the transverse momentum p⊥ in Eq. (15) can be easily
performed, and we then arrived at

G0;02
R ðqÞ ¼ isf

jqfBj
8π

ðq1 þ isfq2ÞΠ00
R ðq∥Þ; ð17Þ

where q1 and q2 are components of the external momen-
tum qμ.
Remarkably, we find that the retarded Green’s function

G0;02
R , which determines the medium’s response to the

vorticity in (3þ 1) dimension, is connected to the polari-
zation tensor in (1þ 1) dimension:

iΠ00
R ðq∥Þ≡

Z
d2p∥

ð2πÞ2 tr2D½γ
0S1þ1ðp∥ þ q∥Þγ0S1þ1ðp∥Þ�:

ð18Þ

Furthermore, since this polarization tensor Π00
R is related to

the chiral anomaly in (1þ 1) dimension, it is one-loop
exact and is not subject to any temperature or density
correction for the massless fermion [23,24]. Here, the one-
loop exact form is given by

Π00
R ðq∥Þ ¼ −

1

π

� ðq3Þ2
ω2 − ðq3Þ2

�
; ð19Þ

where ω≡ q0. By plugging the result of the Green’s
function [Eqs. (17) and (19)] into the Kubo formula
[Eq. (9)], the transport coefficient λ is finally obtained as

λ ¼ CA

2
qfB: ð20Þ

Inserting λ into Eq. (8), we indeed verify Eq. (4), which was
also obtained from the physical argument presented in the
previous section. We also note that one should take the
ω → 0 limit first in Eq. (9) as in the perturbative compu-
tations of other vorticity-induced transport phenomena [21]
(see also Ref. [25] for discussions).
The existence of j0V also implies a corresponding term in

the axial current, jA ¼ Ψ̄ðxÞγμγ5ΨðxÞ. This is due to the
relation between the vector and axial currents in the LLL,
jμA ¼ −sfϵ

μν
∥ jVν, with ϵ03∥ ¼ −ϵ03∥ ¼ þ1. From this relation

j3A ¼ sfj0V and the vector charge density Eq. (4), we also
verify Eq. (5). Of course, one can reach the same con-
clusion by starting out from Eq. (8) with the replacement of
jμV by jμA.

We have thus far considered a single-flavor and color-
neutral fermion. Since the flavor dependence appears only
in the overall factor of qf, extension to multiflavor cases is
simply implemented as the sum of fermion charges. The
color factor Nc for quarks should be included just as the
overall factors in Eqs. (4) and (5).
Summary and applications.—We investigated novel

anomalous transport phenomena in a chiral fluid in the
presence of both vorticity and magnetic field. Our main
results are summarized in Eqs. (4) and (5). Our analyses
suggest that the corresponding transport coefficients are,
due to the relation to the chiral anomaly in (1þ 1)
dimension, protected from temperature and density cor-
rections. The factorization in Eq. (17) plays a crucial role
for establishing the relation to the chiral anomaly. It would
be interesting to examine Eqs. (4) and (5) by different
approaches, for example, by means of the analytic solution
of the Dirac equation in a rotating frame [20], the holo-
graphic correspondence [26], and the Wigner function
formalism [27].
It is important to implement our findings into the

“anomalous magnetohydrodynamics” [28]. Casting Eq. (4)
into a covariant form, we propose the following realization
of the magnetovorticity coupling in the framework of
anomalous magnetohydrodynamics:

uμj
μ
V ¼ n0ðT; μ;BÞ þ Δn; Δn ¼ CAωμBμ: ð21Þ

As in the conventional cases, n0 denotes the local equi-
librium density as a function of temperature T and chemical
potential μ in the absence of vorticity, and uμ is the flow
velocity. The magnetovorticity coupling is included in Δn,
with ωμ ≡ 1

2
ϵμναβuν∂αuβ and Bμ ≡ ~Fμνuν. As mentioned in

the Introduction, this coupling term becomes comparable in
magnitude to the first-order terms in the presence of strong
magnetic fields. Therefore, the modification Eq. (21)
should be included in anomalous magnetohydrodynamics
together with the anomalous terms already considered
in Ref. [14].
Finally, turning to phenomenological applications of our

work, we call attention to the relativistic heavy-ion colli-
sions where both a strong magnetic field and a rotation of
the quark-gluon plasma are created [5]. While effects of the
magnetic field and vorticity have been considered sepa-
rately in the heavy-ion phenomelogy, their interplay has
been overlooked up to now. It is also interesting to
investigate effects of the coupling between magnetic fields
and rotations of compact stars.
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