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We show that inflation can naturally occur at a finite temperature T > H that is sustained by dissipative
effects, when the inflaton field corresponds to a pseudo Nambu-Goldstone boson of a broken gauge
symmetry. Similar to the Little Higgs scenarios for electroweak symmetry breaking, the flatness of the
inflaton potential is protected against both quadratic divergences and the leading thermal corrections. We
show that, nevertheless, nonlocal dissipative effects are naturally present and are able to sustain a nearly
thermal bath of light particles despite the accelerated expansion of the Universe. As an example, we discuss
the dynamics of chaotic warm inflation with a quartic potential and show that the associated observational
predictions are in very good agreement with the latest Planck results. This model constitutes the first
realization of warm inflation requiring only a small number of fields; in particular, the inflaton is directly
coupled to just two light fields.
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Alongside its success in explaining the present flatness
and homogeneity of our Universe, inflation [1] may
provide one of the best probes of high-energy fundamental
physics. A key goal in modern cosmology is thus to
incorporate the physical mechanism driving inflation,
presumably associated with a new fundamental scalar field,
into a more complete particle physics framework.
Most of the recent literature has focused on finding,

within extensions of the Standard Model, flat potentials that
can sustain a slowly evolving scalar field, which mimics a
cosmological constant, for 50–60 e-folds of inflationary
expansion. Although this is a necessary and important task,
it discards other potentially important effects of interactions
between the new inflaton field and other particle degrees of
freedom that may play a crucial role in embedding inflation
within a larger framework.
One of these effects is nonequilibrium dissipation, which

results from the energy exchange between the inflaton field
and other quantum fields in the cosmic plasma. In the
leading adiabatic approximation, it is well known that this
leads to an additional friction term in the inflaton equation
of motion [2,3]:

ϕ̈þ 3H _ϕþϒ _ϕþ V 0ðϕÞ ¼ 0; ð1Þ
where dots correspond to time derivatives, primes denote
here derivatives with respect to ϕ, and H is the Hubble
parameter. Such a friction term is often thought to have no
significant effect during the slow-roll phase, since a priori
accelerated expansion quickly dilutes the cosmic plasma.
However, by transferring the inflaton’s energy into the
plasma, dissipation provides a source that can compensate
for this effect. In particular, when dissipation results from

interactions with light degrees of freedom (DOF) that
thermalize within a Hubble time, the evolution of the
radiation energy density is given by

_ρR þ 4HρR ¼ ϒ _ϕ2; ð2Þ
where ρR ¼ ðπ2=30Þg�T4 for g� relativistic DOF at temper-
ature T. In the slow-roll regime the source term varies
adiabatically, with ϒ ¼ ϒðT;ϕÞ, in general, and the
radiation fluid may reach a slowly evolving state where
ρR ≃ϒ _ϕ2=4H. This may sustain a temperature T ≳H
during inflation for _ϕ ≫ H2, even for ϒ < H, without
violating the slow-roll condition that _ϕ ≪

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp ≃

HMP, where MP denotes the reduced Planck mass.
The presence of dissipative effects may thus lead to a

warm rather than supercooled inflationary regime, an
observation that was first made more than two decades
ago [3]. This idea has several attractive features, namely,
that the additional friction may alleviate the required
flatness of the potential. The slow-roll conditions are, in
particular, modified in the presence of dissipation to
ϵϕ; jηϕj < 1þQ, where Q ¼ ϒ=3H and ϵϕ ¼ M2

PðV 0=
VÞ2=2 and ηϕ ¼ M2

PV
00=V are the slow-roll parameters

[4,5]. Moreover, in the slow-roll regime, one can show that

ρR
VðϕÞ≃

1

2

ϵϕ
1þQ

Q
1þQ

; ð3Þ

so that radiation, although subleading during inflation (as
required for accelerated expansion), may smoothly become
the dominant component if Q≳ 1 when ϵϕ ∼ 1þQ, with
no need for a separate reheating period [6]. In addition,
dissipation modifies the growth of inflaton fluctuations
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[7–11], leaving a distinctive imprint on the primordial
spectrum that can be used to probe the interactions between
the inflaton and other particles.
It was realized a few years after its original proposal

[12,13], however, that the idea of warm inflation was not
easy to realize in concrete models, with Ref. [13] going
further to suggest it could simply not be possible. First, it is
hard to couple the inflaton directly with light fields.
Considering, e.g., a Yukawa interaction gϕψ̄ψ , the fermion
acquires a massmψ ¼ gϕ that is large unless the coupling is
very suppressed, taking into account the large inflaton
values typically required by the slow-roll conditions. A
small coupling then implies that dissipative effects may be
too small to sustain a thermal bath at temperature T > H.
Second, a direct coupling to light fields may lead to large
thermal corrections to the inflaton mass mϕ ∼ gT, which
could prevent slow roll for T > H.
Successful models of warm inflation have nevertheless

been found when the inflaton is only indirectly coupled to
light DOF through heavy mediator fields [14–17]. Thermal
mass corrections are exponentially suppressed in this
regime, whereas the dissipation coefficient is only sup-
pressed by powers of T=Mm ≲ 1, whereMm is the mediator
mass. This suppression implies, however, that a large
multiplicity of mediator fields is required to sustain the
thermal bath for 50–60 e-folds of inflation, and, although
technically consistent, this would mean that warm inflation
can be realized only in special scenarios, such as, e.g., the
case of the brane constructions discussed in Ref. [18].
In this Letter, we show, for the first time, that warm

inflation can be realized by directly coupling the inflaton
to a few light fields. Our scenario borrows some of the
ingredients used in “Little Higgs” models of electroweak
symmetry breaking [19], where the Higgs boson is a
pseudo Nambu-Goldstone boson (PNGB) of a broken
gauge symmetry and its mass is naturally protected against
large radiative corrections (see [20] for a review). In the
same spirit, we take the inflaton to be a PNGB of a broken
U(1) gauge symmetry, as considered in Refs. [21,22].
The main idea is quite simple. Suppose that there are two

complex Higgs fields, ϕ1 and ϕ2, with identical U(1)
charges q and that the scalar potential is such that both
fields have a nonzero vacuum expectation value, which we
take to be equal for simplicity: hϕ1i ¼ hϕ2i≡M=

ffiffiffi
2

p
. The

phases of both fields then yield two NG bosons, but only
one linear combination is the true NG boson that becomes
the longitudinal component of the massive U(1) gauge
boson upon symmetry breaking. The relative phase of the
two fields is, on the other hand, a singlet, since U(1)
transformations shift the phase of each field by the same
amount. This scalar singlet thus remains as a physical DOF
in the broken phase. It is convenient to parametrize the
fields in the broken phase in the form

ϕ1 ¼
Mffiffiffi
2

p eiϕ=M; ϕ2 ¼
Mffiffiffi
2

p e−iϕ=M; ð4Þ

where we assume the radial Higgs fields to decouple for
T ≲M. We thus take the inflaton to be the PNGB ϕ, which
being a gauge singlet may have an arbitrary scalar potential
that can be sufficiently flat to sustain inflation.
We consider, in addition, that the Higgs fields are

coupled to left-handed fermions ψ1L and ψ2L with U(1)
charge q as well as their right-handed counterparts ψ1R and
ψ2R, which we take to be gauge singlets. We consider
identical couplings in magnitude and impose the inter-
change symmetry ϕ1 ↔ iϕ2, ψ1L;R ↔ ψ2L;R, such that the
allowed Yukawa interactions are of the form

−Lϕψ ¼ gffiffiffi
2

p ðϕ1 þ ϕ2Þψ̄1Lψ1R − i
gffiffiffi
2

p ðϕ1 − ϕ2Þψ̄2Lψ2R

¼ gM cosðϕ=MÞψ̄1ψ1 þ gM sinðϕ=MÞψ̄2ψ2: ð5Þ
The resulting Dirac fermion masses are thus m1;2 ≤ gM,
such that they may remain light during inflation for an
arbitrary inflaton value, provided that gM ≲ T ≲M.
For mi ≪ T, i ¼ 1, 2, the fermion contribution to the

finite temperature effective potential is given by [23,24]

VTi ≃ −
7π2

180
T4 þm2

i T
2

12
þ m4

i

16π2

�
ln

�
μ2

T2

�
− cf

�
; ð6Þ

where μ is the MS renormalization scale and cf ≃ 2.635.
From here it is clear that, adding the contribution of both
fermions, the quadratic term becomes independent of ϕ,
such that the leading thermal inflaton mass corrections
cancel, leaving only the subleading Coleman-Weinberg
term. Analogously, one can expand the Yukawa inter-
actions about the background inflaton value:

Lϕψ ¼ −
X
i¼1;2

�
mi þ giδϕþ fi

2
δϕ2 þ � � �

�
ψ̄ iψ i ð7Þ

to compute the inflaton self-energy. At one-loop order, the
relevant diagrams are shown in Fig. 1.
It is then easy to show that, for mi ≪ T, the zero-

momentum self-energy is given by (see, e.g., [23])

Σϕð0Þ ¼ ½ðg21 þm1f1Þ þ ðg22 þm2f2Þ�IT
¼ g2½− cosð2ϕ=MÞ þ cosð2ϕ=MÞ�IT ¼ 0; ð8Þ

where the loop integral IT ≃ −ðΛ2=2π2Þ þ ðT2=6Þ to lead-
ing order for a momentum cutoff Λ. Hence, both quadratic
divergences and thermal mass corrections cancel between
the contributions of both fermions, which is typical of all
Little Higgs models [25]. Note that no other light fields

(a) (b)

FIG. 1. Feynman diagrams contributing to the inflaton self-
energy at one-loop order.

PRL 117, 151301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

7 OCTOBER 2016

151301-2



contribute to the inflaton self-energy in our construction,
since the inflaton is, in particular, a singlet field.
This cancellation occurs, however, only at the local level

of the effective potential, whereas the dissipative term in
Eq. (1) is the leading nonlocal correction to the effective
action in the adiabatic approximation, where the inflaton’s
motion is slower than the relevant microphysical processes.
It is given in terms of the retarded inflaton self-energy in the
real-time formalism [4]

ϒ ¼
Z

d4x0ΣRðx; x0Þðt0 − tÞ: ð9Þ

At one-loop order, only Fig. 1(a) yields a nonlocal con-
tribution, with external legs corresponding to different
times t and t0, whereas Fig. 1(b) contributes only locally.
Equivalently, only Fig. 1(a) can be consistently “cut” and
contribute to the inflaton’s decay. In this scenario, we thus
eliminate the troublesome thermal corrections without
suppressing dissipative effects.
The retarded self-energy can be computed using standard

techniques [23], and here we only outline the main steps of
the calculation, leaving the details for a companion paper.
For T ≫ mi, the leading contributions correspond to on-
shell fermions, for which [16]

ϒi ¼ 4
g2i
T

Z
d3p
ð2πÞ3

m2
i

Γψ i
ω2
p
nFðωpÞ½1 − nFðωpÞ�; ð10Þ

where nFðωpÞ is the Fermi-Dirac distribution, ωp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

i

p
, and Γψ i

is the fermion decay width. We
assume that the latter is dominated by additional Yukawa
interactions, involving a scalar singlet σ and chiral fermions
ψσR, with charge q, and ψσL, with zero charge:

Lψσ ¼ −hσ
X
i¼1;2

ðψ̄ iLψσR þ ψ̄σLψ iRÞ; ð11Þ

which respects the interchange symmetry. This yields for
the on-shell decay width at finite temperature, neglecting
the masses of the decay products,

Γψ i
¼ h2

16π

T2m2
i

ω2
pjpj

�
F

�
kþ
T

;
ωp

T

�
− F

�
k−
T
;
ωp

T

��
; ð12Þ

where k� ¼ ðωp � jpjÞ=2 and

Fðx; yÞ ¼ xy −
x2

2
þ ðy − xÞ ln

�
1 − e−x

1þ e−yþx

�

þ Li2ðe−xÞ þ Li2ð−e−yþxÞ; ð13Þ
where Li2ðzÞ is the dilogarithm function. These Yukawa
terms also give thermal corrections to the fermion masses,
Δm2

i ≃ h2T2=8, which dominate over the inflaton contri-
bution for h ≫ g and T ≲M. Adding the contributions of
ψ1 and ψ2 to dissipation, we then get

ϒ ¼ CTT; CT ≃ αðhÞg2=h2: ð14Þ
An approximate form of the numerical factor αðhÞ can be
obtained by evaluating the fermion decay width at the

momentum pmax ≃ 3.24T that yields the largest contribu-
tion to the dissipation coefficient (10), yielding αðhÞ≃
3=½1 − 0.34 logðhÞ� [26].
For this dissipation coefficient, Q ¼ ϒ=3H ∝ T=H, and

we may write the coupled inflaton and radiation equations
in the slow-roll regime in the form

Q0

Q
¼ 6ϵϕ − 2ηϕ

3þ 5Q
;

ϕ0

MP
¼ −

ffiffiffiffiffiffiffi
2ϵϕ

p
1þQ

; ð15Þ

where primes denote derivatives with respect to the number
of e-folds of inflation. Thus, the ratios Q and T=H grow
during inflation for potentials with 6ϵϕ − 2ηϕ > 0, i.e., those
yielding a red-tilted spectrum in supercooled scenarios.
Dissipation modifies the curvature power spectrum in

different ways. First, it directly sources inflaton fluctua-
tions, yielding a Langevin equation that generalizes (1) for
an inhomogeneous field. Inflaton particles may also be
thermally excited, having a Bose-Einstein rather than
vacuum phase space distribution. Finally, inflaton and
radiation fluctuations are coupled due to the T dependence
of the dissipation coefficient. The resulting dimensionless
power spectrum has the form [7–11,27]

Δ2
R ¼ V�ð1þQ�Þ2

24π2M4
Pϵϕ�

�
1þ 2n� þ

2
ffiffiffi
3

p
πQ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p T�

H�

�
GðQ�Þ;

ð16Þ
where n� denotes the inflaton phase space distribution and
all quantities are evaluated when the relevant cosmic
microwave background (CMB) modes become superhor-
izon 50–60 e-folds before inflation ends. The function
GðQ�Þ accounts for the growth of inflaton fluctuations due
to the coupling to radiation and must be determined
numerically. We have extended the analysis in Ref. [27]
and obtained the numerical fit:

GðQ�Þ≃ 1þ 0.0185Q2.315� þ 0.335Q1.364� : ð17Þ
Tensor modes are essentially unaffected by the dissipative
dynamics, due to the smallness of gravitational interactions,
such that the enhancement of scalar curvature perturbations
generically results in a decrease of the tensor-to-scalar ratio
r ¼ Δ2

t =Δ2
R. It also results in a modified consistency

relation between r and the tensor index nt that may be
used to distinguish warm and supercooled inflationary
models and, thus, probe the interactions between the
inflaton and other fields, as noted in Ref. [28].
Since the modifications to the curvature power spectrum

depend only on Q and T=H ∝ Q, the scalar spectral index
ns − 1≃ d lnΔ2

R=dNe will be determined, according to
Eq. (15), by the combination −6ϵϕ þ 2ηϕ at horizon
crossing, as in cold inflation. For instance, with thermalized
inflaton fluctuations, n� ≃ T�=H� ≳ 1, and Q� ≪ 1,
we find ns ≃ 1þ ð2=3Þð2ηϕ − 6ϵϕÞ. In this case, we can
also use the slow-roll equations to show that
ðT�=H�Þ2 ≃ 30CT=ð8π4Δ2

Rg�Þ ∼ 106CT , with g� ≃ 12.5
in our model. This shows that a warm regime, T ≳H,
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can be obtained for the entire duration of inflation if the
couplings g=h≳ 10−3 and that Q� ≳ 10−7.
In general, one can use the amplitude of the curvature

power spectrum (16) to determine T�=H� and Q� for given
values of the couplings, independently of the inflaton
potential. We find that observationally consistent scenarios
have CT ≲ 0.02, requiring no large couplings.
As an example, let us consider the case of chaotic

inflation with a quartic potential: VðϕÞ ¼ λϕ4 [29]. The
slow-roll equations (15) can be analytically integrated, and,
e.g., for Q� ≪ 1, this yields for the number of e-folds

Ne ≃ 1

8

�
ϕ�
M2

P

�
2

ð1þ 1.1Q� −Q� logQ�Þ; ð18Þ

giving the leading correction to the supercooled result. To
leading order, we find ns − 1≃ −2=Ne for thermal fluc-
tuations, which gives ns ≃ 0.96 − 0.967 for Ne ¼ 50–60,
in agreement with the Planck results [30].
In Fig. 2, we show the predictions for the quartic model

for both the thermalized case and when inflaton particle
production in the thermal bath is negligible, n� ≪ 1.
The ratios Q� and T�=H� increase from top to bottom in

Fig. 2, where it is clear that the tensor-to-scalar ratio is
suppressed compared to the cold case. The regions within
the Planck contours have, in both cases, T�=H� ≳ 2 and
Q� ≲ 1, whereas if dissipation is already strong at horizon
crossing, Q� ≳ 1, the spectrum becomes more blue-tilted
due to the coupling between inflaton and radiation fluctua-
tions. Chaotic warm inflation is nevertheless consistent
with observations down to r≳ 10−5, as opposed to the
supercooled case [30]. This agreement is obtained within
consistent models for perturbative couplings h ¼ Oð1Þ and
g≃ 0.05 − 0.2, with maximum temperature (at horizon
crossing) T� ¼ ð1.3–6.7Þ × 1015 GeV, showing that CMB
data can give precise information about the interactions
between the inflaton and other fields and also the temper-
ature during inflation.
In Fig. 3, we illustrate the evolution of the different

dynamical quantities in the quartic model, obtained numeri-
cally for an example with g ¼ 0.08, and h ¼ 2, yielding
T�=H� ≃ 123 and Q� ≃ 0.27. For ϕ� ≃ 16MP, the slow-
roll conditions fail after ≃60 e-folds, whereas in the
absence of dissipation one would only get half this value.
It is also clear that inflation ends in the strong dissipation
regime and that radiation will come to dominate.
One can also see that Γψ ≳H, showing that the fermions

maintain a near-equilibrium distribution and that the
inflaton’s motion is adiabatic compared to the main micro-
physical processes in the thermal bath. In the bottom plot of
Fig. 3, one can see that the temperature satisfies the
conditions gM ≲ T ≲M for M ≃ 1015 GeV.
We note that the inflaton field value is much larger

than the symmetry-breaking scale in this example,
corresponding to a large relative phase between the two
complex Higgs fields, although the inflationary energy
scale V1=4

� ≃ 5 × 1015 GeV is comparable toM. Such large

field values are natural in the context of chaotic inflation,
where the Universe emerges from the pre-Planckian era
with Planckian energy densities and a chaotic field dis-
tribution. The spatial regions that begin inflating already at
this stage are those where the inflaton’s potential energy is
Planckian, and for small self-couplings this corresponds to
super-Planckian field values.
In this example, we find ns ≃ 0.964 and r≃ 8 × 10−4

for thermal inflaton fluctuations, in agreement with the
bounds set by the Planck satellite. We have explicitly
checked that the Coleman-Weinberg corrections in Eq. (6)
do not significantly change these observables nor the
number of e-folds, although they become more relevant
for larger values ofQ�. We will provide more details on this
and other scalar potentials in a companion paper.
Our results show that there exist observationally con-

sistent scenarios where inflation naturally occurs in a warm
rather than supercooled regime, using simple interactions
involving the inflaton and only four additional fields. A
crucial issue in realizing warm inflation is to protect the
flatness of the inflaton potential at a finite temperature,

Q 10 4

Q 10 2

Q 1

Q 2
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r

FIG. 2. Observables for the quartic model with 50–60 e-folds of
inflation, considering nearly thermal (blue) and negligible (green)
inflaton occupation numbers. The Planck 2015 68% and
95% C.L. contours are shown in gray [30]. The dashed curves,
corresponding to T� < H�, are shown for completeness, although
our analysis is not valid in this regime.
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FIG. 3. Example of the dynamical evolution in warm inflation
with a quartic potential. The dashed lines in the bottom plot
correspond to M and gM (in Planck units).
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without suppressing dissipation. We have, for the first time,
achieved this goal using symmetries that can also be
employed to stabilize the Higgs boson mass. Our con-
struction eliminates, in particular, the troublesome thermal
corrections to the inflaton mass while still allowing for
significant dissipative effects, and the fields coupled to the
inflaton remain light despite the large field values generi-
cally required to sustain the slow-roll dynamics for suffi-
ciently long. These fields can also decay faster than
expansion and thus keep a nearly thermal distribution,
such that the dissipative process is adiabatic. We have, thus,
evaded the major obstacles for realizing warm inflation in
the high-temperature regime [13] and, moreover, consid-
ering only a small number of light fields.
The presence of a thermal bath and dissipation during

inflation can have a large impact on inflationary model
building [7]. Dissipation alleviates the “η problem” that
plagues supergravity or string inflation models and lowers
the required field values in chaotic scenarios, thus signifi-
cantly contributing towards constructing consistent effec-
tive field theory descriptions of inflation and their
embedding within a fundamental theory. It also addresses
the problem of initial conditions for inflation [31] and its
“graceful exit” into a radiation-dominated regime, elimi-
nating the additional model dependence of a separate
reheating period that may prove extremely hard to probe
observationally. Moreover, in warm inflation important
processes such as baryogenesis may occur during inflation
and be probed using CMB data [6,32–34].
Realizing warm inflation in a simple model with only a

few fields thus marks a significant step in constructing
successful particle physics models of inflation where these
features can be optimally developed.
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