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According to heuristic arguments, global AdS5 × S5 black holes are expected to undergo a phase
transition in the microcanonical ensemble. At high energies, one expects black holes that respect the
symmetries of the S5; at low energies, one expects “localized” black holes that appear pointlike on the S5.
According to anti–de Sitter/conformal field theory correspondence, N ¼ 4 supersymmetric Yang-Mills
(SYM) theory on a 3-sphere should therefore exhibit spontaneous R-symmetry breaking at strong coupling.
In this Letter, we numerically construct these localized black holes. We extrapolate the location of this
phase transition, and compute the expectation value of the broken scalar operator with lowest conformal
dimension. Via the correspondence, these results offer quantitative predictions for N ¼ 4 SYM theory.
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Introduction.—Since its discovery, the duality between
type IIB supergravity on AdS5 × S5 and N ¼ 4 super-
symmetric Yang-Mills (SYM) theory with a large N gauge
group SUðNÞ and large ‘t Hooft coupling remains our
best understood example of a gauge-gravity duality [1–4].
This example is also one of the few instances where both
sides of the correspondence are explicitly known.
Like other such examples with string theoretic origins,

the gravity theory contains a compact space: the S5.
According to the duality, this S5 is dual to the R symmetry
of the gauge theory. Heuristic arguments on the gravity side
suggest that black holes can spontaneously break the
symmetries of the S5, an effect which would be dual to
R-symmetry breaking [5–7]. However, this aspect of the
duality remains largely unexplored.
Let us review these heuristic arguments. When the

gravity theory is asymptotically global AdS5 × S5, the
dual gauge theory lives in a background conformal to
RðtÞ × S3. Even though the gauge theory itself is scale
invariant, the curvature of the S3 provides a length scale L
that can potentially allow for phase transitions to occur. In
the gravity theory, L is equal to the AdS length scale and
the radius of the S5.
Meanwhile, black holes are dual to thermal states in the

gauge theory. The most well-understood black holes in the
gravity theory are those that preserve the symmetries of
the S5, such asAdS5-Schwarzschild × S5 (AdSSchw5 × S5),
which has horizon topology S3 × S5. Since the S5 radius is
fixed, its entropy at low energies is determined by the size of
the S3, which gives the entropy scaling S ∼ E3=2.
However, one expects the existence of spherical black

holes that “localize” on the S5. These are black holes that
are small enough to appear pointlike on the S5 and are
affected by the full 10-dimensional geometry. These have
horizon topology S8, so its entropy at low energies

scales as S ∼ E8=7. They would, therefore, compete with
AdSSchw5 × S5 and dominate at low energies.
As the size of the localized black hole is increased, more

of the S5 gets filled by the black hole. When the entire S5

gets filled, the horizon changes topology to S3 × S5, but
contains inhomogeneous deformations in the S5 directions.
Such solutions are called “lumpy” black holes [8].
The existence of lumpy black holes can also be inferred

from an instability of AdSSchw5 × S5 black holes [9].
When the S3 horizon radius is much smaller than the S5

radius, there is a separation of horizon length scales. This
separation causes an instability, much like the Gregory-
Laflamme instability affecting black strings [10–16].
New solutions often branch off from the critical onset of
such instabilities, and these are the lumpy black holes.
Since localized black holes and lumpy black holes only

exist for energy scales small compared to the S5 radius,
there must be a phase transition to AdSSchw5 × S5 black
holes. Because AdSSchw5×S5 respects the S5 symmetries,
but the localized black holes and lumpy black holes do not,
this transition spontaneous breaks this symmetry. By the
duality, this transition is dual to R-symmetry breaking in
the gauge theory.
Beyond this qualitative picture, little is known about this

phase transition. Though the critical onset of the instability
was located in Ref. [9], later work [8] has demonstrated
that lumpy black holes near this onset have less entropy
than AdSSchw5 × S5. Therefore, the onset of the instability
cannot be the location of the phase transition, and the
transition must be first order. Without further information
about the localized black holes, the location of the phase
transition, and the expectation value of the scalar operators
in the broken phase remain unknown.
In this Letter, we construct these localized black

holes numerically. We demonstrate that these solutions
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entropically dominate over AdSSchw5 × S5 at small
energies, extrapolate the location of the phase transition,
and compute the expectation value of a scalar operator in
the dual field theory. Through the duality, these results offer
new quantitative predictions for N ¼ 4 SYM.
Numerical approach.—The minimal field content in type

IIB supergravity that can be asymptotically AdS5 × S5

consists of a metric g and a self-dual 5-form Fð5Þ ¼ dCð4Þ.
Their equations of motion are

EMN ≡ RMN −
1

48
FMPQRSFN

PQRS ¼ 0; ð1aÞ

∇MFMPQRS ¼ 0; ð1bÞ

Fð5Þ ¼ ⋆Fð5Þ: ð1cÞ

We seek static, topologically S8 black hole solutions that
are asymptotically AdS5 × S5. Gravitational intuition
suggests that the most symmetric of such black holes will
have the largest entropy. These haveRðtÞ × SOð4Þ × SOð5Þ
symmetry, where the full SOð4Þ symmetry of AdS5 and the
largest subgroup of SOð6Þ are preserved.
We find these solutions using the DeTurck method

[15–17]. This method first requires the choice of a
reference metric g that has the same symmetries and causal
structure as the desired solution. For our localized black
holes, the reference metric must contain a horizon, be
asymptotically AdS5 × S5, and contain three axes: one for
an S3, and the “north” and “south” poles of the S5. Because
these requirements lead to an integration domain with five
boundaries, we opt to work in two separate coordinate
systems, one which is adapted to the horizon, and another
which is adapted to asymptotic infinity.
We therefore take the reference metric to be

ds2 ¼ L2

ð1 − y2Þ2
�
−

1

L2
H1dt2

þH2

�
4dy2

2 − y2
þ y2ð2 − y2ÞdΩ2

3

��

þ L2H2

�
16dx2

2 − x2
þ 4x2ð2 − x2Þð1 − x2Þ2dΩ2

4

�

¼ −M
ðρ7 − ρ70Þ2
ðρ7 þ ρ70Þ2

dt2 þ L2H2

�
dρ2 þ ρ2

�
4dξ2

2 − ξ2

þG1ξ
2ð2 − ξ2ÞdΩ2

3 þG2ð1 − ξ2Þ2dΩ2
4

��
; ð2Þ

where ρ0 is a constant, H1, H2, M, G1, and G2 are scalar
functions (to be specified shortly), and the line elements are
equated via the coordinate transformation

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sechðρξ

ffiffiffiffiffiffiffiffiffiffiffiffi
2 − ξ2

p
Þ

q
;

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin

�
1

2
ρð1 − ξ2Þ

�s
: ð3Þ

The reference metric (2) has the horizon at ρ ¼ ρ0,
asymptotic infinity at y ¼ 1 ðρ → ∞Þ, the S3 axis at
y ¼ 0 (ξ ¼ 0), the S5 north pole at x ¼ 1 (ξ ¼ 1), and
the south pole at x ¼ 0.
It now remains for us to specify the functions. Equality

of line elements via Eq. (3) implies that only M (which
determines H1), and H2 remain unspecified. We must
choose these so that H1 ¼ H2 ¼ 1 at y ¼ 1 in order to
recover AdS5 × S5 asymptotically. We must also have
M ∝ H2 at ρ ¼ ρ0 in order to have a regular horizon.
(The axes are already manifestly regular.) To satisfy these
requirements, we take

M ¼ 1þ ðρ70 − ρ7Þ2
ðρ7 þ ρ70Þ2

sinh2
�
ρξ

ffiffiffiffiffiffiffiffiffiffiffiffi
2 − ξ2

p �
;

H3 ¼ ð1þ ρ70=ρ
7Þ4=7: ð4Þ

This choice has the added benefit that for small ρ0, the
geometry near the horizon is approximately asymptotically
flat Schwarzschild in isotropic coordinates.
With a reference metric, the DeTurck method then

modifies the Einstein equation (1a) to

EMN −∇ðMξNÞ ¼ 0; ξM ≡ gPQ½ΓM
PQ − ΓM

PQ�; ð5Þ

where ΓM
PQ and ΓM

PQ define the Levi-Civita connections for g
and g, respectively. Unlike Eq. (1a), this equation yields
PDEs that are elliptic in character. But after solving these
PDEs, we must verify that ξM ¼ 0 to confirm that (1a) is
indeed solved. Local uniqueness properties of elliptic
equations guarantee that solutions with ξM ¼ 0 are
distinguishable from those with ξM ≠ 0. The condition
ξM ¼ 0 also fixes all gauge freedom in the metric.
We choose a general ansatz that is consistent with the

symmetries. The gauge potential takes the form

Cð4Þ ¼ L3Fdt∧dSð3Þ þ L4WdSð4Þ; ð6Þ

where F and W are unknown functions. The function W
can be algebraically eliminated from the equations of
motion and determined after the metric and F are known.
For boundary conditions at infinity y ¼ 1 (ρ → ∞), we

require global AdS5 × S5 asymptotics. The remaining
boundary conditions are determined by regularity. To
handle the five boundaries numerically, we divide the
integration domain into a number of nonoverlapping
warped rectangular regions or “patches” as shown in Fig. 1.
The four patches far from the horizon use fx; yg coor-
dinates, while the remaining patch uses fρ; ξg coordinates.
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We require that the metric g, the form Cð4Þ, and their first
derivatives match across patch boundaries.
We therefore have a boundary value problem for 7

functions in two dimensions. L drops out of the equations
of motion, so the only parameter is ρ0, which fixes the
black hole temperature [18]. We solve the system using a
Newton-Raphson algorithm with the reference metric and
F ¼ H1y4ð2 − y2Þ= ffiffiffi

2
p ð1 − y2Þ4 at ρ0 ¼ 0.1 as a first seed.

We use pseudospectral collocation with transfinite inter-
polation of Chebyshev grids in each patch, and the linear
systems are solved by LU decomposition.
We were able to reach a maximum value of ρ0 ¼ 0.85,

with all solutions satisfying ξ2 < 10−10. Our numerical
method converges according to standard expectations, and
we have also checked that a Komar identity (see, e.g.,
Ref. [19]) is satisfied within 0.1%. (Details can be found
in the Supplemental Material [20].)
Results.—In Fig. 2 we show the radii RΩ3

, RΩ4
of the

geometrically preserved S3 and S4 along the horizon. This
curve at small ρ0 (high temperatures) is approximated by
R2
Ω3

þ R2
Ω4

≈ 24=7ρ20L
2, implying that the horizon is nearly

spherical. At larger ρ0 (lower temperatures), the horizon is
much more deformed.
Now we compute thermodynamic quantities. The tem-

perature T is fixed by ρ0. The entropy S is found by
integrating the horizon area. The energy E is computed
using the formalism of Kaluza-Klein holography and
holographic renormalization [8,21–28] (technical details
can be found in Ref. [8] and the Supplemental Material
[20]). By the AdS=CFT dictionary, the 10- and 5-dimen-
sional Newton constant can be converted to the number of
colors N ofN ¼ 4 SYM theory via G10 ¼ ðπ4=2ÞðL8=N2Þ
and G5 ¼ ðG10=π3L5Þ. These thermodynamic quantities
numerically satisfy the first law dE ¼ TdS to< 0.1% error.
In the microcanonical ensemble, the energy is fixed, and

the dominant solution has the most entropy. In Fig. 3, we

show ΔS=N2 vs EL=N2 for various competing solutions,
where ΔS≡ S − S0 with S0 being the entropy of
AdSSchw5 × S5 [29,30]. Data for the localized black holes
as well as a fit are shown by the solid purple line and its
points. As a check, we note that this curve is well
approximated by 10-dimensional Schwarzschild (the
brown dotted line) at low energies.
We see that the localized black holes have the largest

entropy among known solutions for EL=N2 ≲ 0.225.
Above this energy, AdSSchw5 × S5 is dominant. The value
EL=N2 ≈ 0.225 (black dot in Fig. 3) therefore marks the
point of a first-order phase transition (S=N2 ≈ 0.374 at this
energy). We note that while this value is obtained by
extrapolating a fit, the error in the fit parameters is under

FIG. 1. Integration domain in fx; yg coordinates. The green
patch near the horizon is mapped from fρ; ξg coordinates.

FIG. 2. Radii of the S3 and S4 along the horizon. From the
bottom left to the top right T ¼ f1.90; 0.945; 0.708; 0.538g.

FIG. 3. Microcanonical phase diagram: entropy with respect
to that of AdSSchw5 × S5 versus energy. The dashed red line is
the AdSSchw5 × S5 phase, which is dynamically unstable for
EL=N2 ≲ 0.173 [9] (green diamond). The blue squares are the
lumpy black hole phase [8]. The solid purple curve and its points
describe the localized black holes and a fit of their data. The
brown dotted line is the lowest-order 10-dimensional Schwarzs-
child approximation. There is a first-order phase transition at
EL=N2 ≈ 0.225 (black dot).
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0.03%. Furthermore, other extrapolation methods like
polynomial interpolation are within 2% of this value.
We also point out that AdSSchw5 × S5 black holes are

unstable for EL=N2 ≲ 0.173 [9] (green diamond in Fig. 3),
and we have data for localized black holes in this energy
range. The fact that localized black holes have more
entropy than AdSSchw5 × S5 for these energies indicates
that they are a plausible end point to the instability.
The lumpy black holes are shown by the blue squares

in Fig. 3. They are subdominant. As mentioned in the
introduction, they are connected to the onset of the
instability (green diamond). We expect this phase to
eventually join up with the localized black hole phase.
Recall from the introduction that localized black holes

are dual to a thermal state where the R symmetry ofN ¼ 4
SYM theory has been spontaneously broken [in our case
down to SOð5Þ]. This results in a condensation of an
infinite tower of scalar operators with increasing conformal
dimension. The lowest conformal dimension is 2, and the
associated scalar operator is

O2 ¼
2

g2YM

ffiffiffi
5

3

r
Tr
�
ðX1Þ2 − 1

5

X6
i¼2

ðXiÞ2
�
; ð7Þ

where Xi the are the six real scalars of N ¼ 4 SYM theory
in the vector representation of SOð6Þ and gYM is the
coupling constant (see, e.g., Ref. [31] for the action of
N ¼ 4 SYM theory). The expectation value hO2i in the
broken phase can be found from the supergravity solution
through the formalism of Kaluza-Klein holography
[8,21–28] (some details are also in the Supplemental
Material [20]). We show hO2i for a range of energies in
Fig. 4. Because the symmetry breaking transition is first
order, hO2iwill have a nonzero value at the phase transition.
For completeness, less us discuss the canonical ensemble

where the temperature is fixed and the solution with lowest
free energy F ¼ E − TS dominates. There is the first-order
Hawking-Page phase transition [29] between large
AdSSchw5 × S5 black holes at higher temperatures and
thermal AdS5 × S5 at lower. In the gauge theory, this is dual
to a confinement or deconfinement transition [30]. All other

known solutions, namely, the localized and lumpy black
holes, never dominate the canonical ensemble. (The
Supplemental Material [20] contains a phase diagram.)
Discussion.—To summarize, we have numerically con-

structed asymptotically global AdS5 × S5 localized black
holes in type IIB supergravity. These black holes are
topologically S8 and are more entropic than any other
known solution at low energies. At higher energies near
EL=N2 ≈ 0.255, there is a first-order phase transition to
AdSSchw5 × S5 black holes. By the AdS=CFT correspon-
dence, these localized black holes are dual to a thermal state
of N ¼ 4 super Yang Mills (with a large N gauge group
and large ‘t Hooft coupling) theory with spontaneously
broken R symmetry. The scalar sector with the broken
symmetry contains a dimension-2 operator with an expect-
ation value shown in Fig. 4 and preserves a SOð5Þ
subgroup of the SOð6Þ R symmetry.
As a test of AdS=CFT, it would be desirable to reproduce

these results from the gauge theory side. So far, lattice tests
of AdS=CFT rely on finite temperature, and have been
restricted to the canonical ensemble [32–38]. However,
there has been recent progress in first-order phase tran-
sitions in several ensembles [39–41].
The completion of the phase diagram in Fig. 3 can be

conjectured from other systems with Gregory-Laflamme
instabilities [11–15,42,43] (see reviews in Refs. [14,16]).
We expect the lumpy black hole to meet with the localized
black holes in the space of solutions. For this to happen
without violating the first law, there must be a cusp
somewhere in the S=N2 vs EL=N2 curve. These families
must meet at a topological transition point, which would be
a solution with a naked singularity. Analogous systems
with Gregory-Laflamme instabilities suggest that this
topological transition point is closer to the lumpy black
hole side of the curve. That is, that the cusp would be a
topologically S8 black hole.
Let us now comment on dynamical evolution. Entropy

arguments suggest that the evolution of unstable
AdSSchw5 × S5 black holes would proceed towards the
most dominant solution, which are the localized S8 black
holes. This entails a violation of cosmic censorship, much
like in the evolution of the black string [44] or black ring [45].
Whether or not the evolution proceeds in this way, and the
implications forN ¼ 4 SYM theory if cosmic censorship is
violated remain important open problems. Interestingly,
there is a range of energies 0.173≲ EL=N2 ≲ 0.225 where
AdSSchw5 × S5 is subdominant in entropy but nevertheless
dynamically stable. In the field theory, this means that the
time scale for spontaneous symmetry breaking at these
energies is exponentially suppressed in N, compared to
those at lower energies.
Many localized solutions dual to N ¼ 4 SYM theory

states remain to be studied. In global AdS5 × S5, there are
localized solutions that breakmore symmetries, but these are
likely less entropic than the ones preserving SOð5Þ. There

FIG. 4. Dimension 2 scalar condensate versus energy.
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are other localized solutions arising from higher harmonics
of the Gregory-Laflamme instability [8,46]. In particular, the
next harmonic leads to double S8 black holes and S4 × S4

‘black belts’ [8]. However, these require a delicate balancing
of forces and are likely unstable. Rotational effects remain
largely unexplored except for the onset of the Gregory-
Laflamme instability for equal spin black holes [16]. Beyond
global AdS5 × S5, there is freedom to choose a different
gauge theory background than one conformal to RðtÞ × S3.
This can yield novel physics like plasma balls and boundary
black holes (see Ref. [47] for a review), but none of these
studies have included the effects of localization.
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