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We analyze doubly magic trapping of Cs hyperfine transitions including previously neglected
contributions from the ground state hyperpolarizability and the interaction of the laser light and a static
magnetic field. Extensive numerical searches do not reveal any doubly magic trapping conditions for any
pair of hyperfine states. However, including the hyperpolarizability reveals light intensity insensitive traps
for a wide range of wavelengths at specific intensities. We then investigate the use of bichromatic trapping
light fields. Deploying a bichromatic scheme, we demonstrate doubly magic red and blue detuned traps for
pairs of states separated by one or two single photon transitions.
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The international primary standard for time is the Cs
atom ground state hyperfine clock transition j3; 0i ↔ j4; 0i
which is defined to have a frequency of 9 192 631 770 Hz.
Coherent control of alkali atom clock states is of great
interest for precision measurements [1] and for encoding
neutral atom qubits for quantum computation experiments
[2]. Although the clock states have excellent coherence
properties in a field free environment, fluctuations of
optical and magnetic trapping and bias fields lead to
differential shifts of the clock state energies causing
decoherence.
Much recent work has been devoted to finding magic

trapping conditions for which variations of external fields
do not lead to a differential shift δE of the clock state
energies. For alkali atom hyperfine transitions there are
magic conditions for hyperfine Zeeman states with
MF ≠ 0 [3–6] which eliminate sensitivity to trapping light
intensity noise but are still sensitive to magnetic noise
(∂δE=∂Ω2 ¼ 0, ∂δE=∂B ≠ 0 with Ω2 proportional to the
light intensity and B the magnetic field). There are also
magic conditions for states with MF ¼ 0 which are
insensitive to light fluctuations at the cost of increased
sensitivity to magnetic noise(∂δE=∂Ω2 ¼ 0, ∂δE=∂B ≫ 0)
due to the requirement of a relatively large magnetic bias
field of several Gauss [7–9]. In [10,11] doubly magic traps
were proposed which use MF ≠ 0 states with elliptically
polarized light to cancel the sensitivity to both light
intensity and magnetic field noise (∂δE=∂Ω2 ¼ 0 and
∂δE=∂B ¼ 0). We assume, as is normally done, that there
are no fluctuations of the light polarization state. These
doubly magic conditions were restricted to certain wave-
length ranges and required very precise preparation of the
field polarization state. Doubly magic conditions have also
been found for magnetically trapped atoms with microwave
frequency dressing fields [12,13].
In this Letter we study magic trapping conditions in

optical traps while consistently accounting for the hyper-
polarizability, which is fourth-order in the electric field

amplitude, as well as the interaction of the vector polar-
izability with the static magnetic field. As we illustrate in
Fig. 1 and explain below these terms are important for
accurate calculations of the differential shift δE at typical
experimental trap depths. Including these effects, which
were not fully accounted for in previous calculations, and
after an extensive parameter search we find no parameters
for doubly magic trapping in a monochromatic trapping
light field. This suggests that previously reported doubly
magic solutions [10] are not doubly magic. However,
we demonstrate insensitivity to differential light shifts
with only one frequency and pure circular polarization at
specific intensities Ω2

0 for a wide range of wavelengths
(∂δE=∂Ω2jΩ¼Ω0

¼ 0).
Although we have not found doubly magic conditions

with monochromatic trapping light, a bichromatic
approach, following the proposal in [14], does allow for
doubly magic trapping for red or blue detuned optical traps.
Our results significantly extend the range of configurations
which can be used for doubly magic trapping. In particular,
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FIG. 1. Differential shift δE as a function of trapping light
intensity (which is proportional to trap depth) and magnetic field.
(a) δE at B ¼ 0 using second-order perturbation theory (red) and
fourth-order (blue) for the Cs clock states j3; 0i; j4; 0i at λ ¼
780 nm with σþ polarized light. Notice the minimum in δE as a
function of the light intensity (trap depth) which constitutes a
magic operating point. (b) δE as a function of the magnetic
field with (blue) and without (red) the third-order cross term for
λ ¼ 780 nm, Ω=2π ¼ 100 GHz, σþ polarization, and the states
j4; 1i; j3;−1i.
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we can make the MF ¼ 0 clock transition j4; 0i ↔ j3; 0i
and the two photon transition j4; 1i ↔ j3;−1i doubly
magic. While we provide a viable and flexible approach
for achieving extended coherence with trapped alkali
atoms we emphasize that our solutions only give
∂δE=∂Ω2jΩ¼Ω0

¼ 0 and ∂δE=∂BjΩ¼Ω0
¼ 0 at a specific

trapping intensity Ω2
0. Contrary to previous work that did

not include the hyperpolarizability [9,10] there is still a
nonzero light induced differential shift of the clock states at
the magic intensity. A consequence of this shift is that
trapped atoms in a thermal motional state which samples
different optical intensities will still experience small time
dependent differential shifts. Furthermore in the context of
high accuracy microwave clocks the clock frequency will
depend on the intensity. Although it is possible to choose an
intensity for which the differential shift vanishes [where
the blue curve in Fig. 1(a) crosses zero] the derivative
of the shift with respect to intensity will be nonzero. Our
inclusion of hyperpolarizability effects suggests that
conditions for which δEjΩ¼Ω0

¼ 0 and simultaneously
∂δE=∂Ω2jΩ¼Ω0

¼ 0 do not exist.
The calculational approach we follow is to use fine

structure energies at zeroth order and treat the hyperfine
and Zeeman interactions as perturbations. We use exact
diagonalization to consistently include the fourth-order
hyperpolarizability, third-order hyperfine-mediated polar-
izability, and third-order cross term between the polar-
izability and the Zeeman interaction. An example of a
Hamiltonian between Cs 6s1=2 jF;MFi hyperfine states
j0i ¼ j3; 1i and j1i ¼ j4; 1i is given in Eq. (1). Though
these states are not ideal for magic conditions, for the case
of light that is circularly polarized in the plane
perpendicular to the magnetic field which defines the
quantization axis, their analysis reduces to a simple
2 × 2 matrix which serves to elucidate our procedure for
searching for doubly magic traps. Our model Hamiltonian
for these states is

H¼
�
Vhf;0þV00þ β00þZ00 V01þ β01þZ01

V01þ β01þZ01 Vhf;1 þV11þ β11þZ11

�
:

ð1Þ

Here Vhf;i is the diagonal hyperfine interaction, Vii, Vij
arise from the quadratic polarizability due to the trapping
light, βii, βij are from the third-order diagonal and off-
diagonal hyperfine-mediated polarizability, Zii are the first-
order diagonal Zeeman shifts, and Zij is the magnetic
dipole coupling due to the external magnetic field. For all
calculations we include the 6p1=2, 6p3=2, 7p1=2, 7p3=2
levels, excited ns1=2 states up to 14s1=2, and the counter-
rotating terms. For states with different MF values or
elliptically polarized light the Hamiltonian may have larger
dimension and is constructed using the methods detailed in
the Supplemental Material [15] with analysis based on
numerical diagonalization.

The eigenvalues of (1), replacing the diagonals by ΔE0,
ΔE1, are

δE1;0 ¼
ΔE0 þ ΔE1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðV01 þ Z01Þ2 þ ðΔE1 − ΔE0Þ2

p
2

where we ignore β01 for the moment since V01 ≫ β01.
In the limit where the hyperfine interaction dominates
other perturbations, i.e. ðΔE1 − ΔE0Þ2 ≫ ðV01 þ Z01Þ2,
the differential shift relative to the hyperfine splitting
Vhf;1 − Vhf;0 is

δE ¼ β11 − β00 þ Z11 − Z00 þ 2
Z2
01 þ 2V01Z01 þ V2

01

ΔE1 − ΔE0

:

ð2Þ

V00 ¼ V11 since the electric dipole operator only couples to
the electronic quantum numbers which are the same for
both states and thus cancel out of the differential shift. From
here we can make the connection to nondegenerate per-
turbation theory. The final term on the right includes the
second-order Zeeman shift (Z2

01), the third-order cross term
(2V01Z01), and finally a fourth-order hyperpolarizability
term (V2

01). Figure 2 depicts the physical origin of the
higher-order terms.
To check our results we calculated δE per unit of

intensity for clock states MF ¼ 0 and light linearly polar-
ized perpendicular to the quantization axis as in the
experiment of Ref. [5]. In this case the only nonzero
off-diagonal term in (1) is Z01. For 780(532) nm light they
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FIG. 2. Schematic representation of four of the terms that
contribute to the differential shift. From left to right we have the
cross term of two electric dipole couplings and a magnetic dipole
coupling. This can also happen in reverse order thus the extra
factor of two in Eq. (2). Next is the fourth-order term with four
electric dipole couplings. This is also the crucial term in the
bichromatic scheme except that it then couples to the other
ground state that is dressed by a sideband energy very close
to the clock frequency. Third, is the hyperfine-mediated polar-
izability term that is diagonal in the ground state hyperfine
interaction (HFI). Last is the hyperfine-mediated polarizability
term involving HFI-induced mixing of the ground 6s1=2 state and
excited ns states.
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measured −2.27ð40Þ×10−2ð−3.51ð70Þ×10−4ÞHz=W=cm2

compared to our values of −2.02 × 10−2ð−4.08×
10−4Þ Hz=W=cm2. In both cases we are within experi-
mental error bars and differ by no more than 15%.
We proceed to write down a system of approximate

equations that guide the search for doubly magic con-
ditions. To isolate the dependence on the amplitude of the
optical trapping field E and the magnetic field B we make
the replacements: Ω ¼ E=ℏh6p1=2jjerjj6s1=2i, β11 − β00 →
βð1ÞΩ2, Z11 − Z00 → μð1ÞB, 2ðZ2

01=ΔE1 − ΔE0Þ → μð2ÞB2,
4ðV01Z01=ΔE1 − ΔE0Þ → βð2ÞΩ2B, 2ðV2

01=ΔE1−ΔE0Þ→
βð4ÞΩ4. Then the differential shift is

δE ¼ μð1ÞBþ μð2ÞB2 þ βð1ÞΩ2 þ βð4ÞΩ4 þ βð2ÞΩ2B ð3Þ

and after taking the appropriate derivatives

dδE
dB

¼ μð1Þ þ 2μð2ÞBþ βð2ÞΩ2; ð4Þ

dδE
dΩ2

¼ βð1Þ þ βð2ÞBþ 2βð4ÞΩ2: ð5Þ

Doubly magic trapping occurs when both derivatives
simultaneously vanish for a set of parameters (Ω, B), thus
eliminating the first-order sensitivity to both electric and
magnetic fields. We emphasize that solving the above
equations only yields approximate results since we have
suppressed additional small terms arising from the higher-
order dependence of the coefficients on Ω and B. The
accurate results reported in the tables are found from
diagonalizing the ground state Hamiltonian (1) and looking
for local minima (or maxima) in the differential shift
corresponding to a doubly magic operating point.
It is the implications of the cross term with coefficient

βð2Þ, and βð4Þ the hyperpolarizability, that drive the novel
results in this paper. The cross term has been partially
included before in [10] where doubly magic wavelengths
were calculated by determining the magic magnetic field
with no light interacting with the atoms, i.e., ignoring the
last term in Eq. (4). However, this neglects the fact that
through this term the light intensity also affects the magic
magnetic field value, that is, we have a coupled system of
equations. In addition the effects of the fourth-order term at
the end of Eq. (5) have not previously been accounted for.
As we will show, this term cannot be neglected and the
implication is that there exist not magic wavelengths but
magic intensities for most wavelengths.
The influence of the hyperpolarizability on magic trap-

ping conditions is known to be important for optical atomic
clocks [26] but has been neglected in previous analyses of
microwave clocks. As an example an optical dipole trap
for Cs atoms based on a modest power of 20 mW at
λ ¼ 1.06 μm focused to a waist (1=e2 intensity radius) of
w ¼ 2 μm gives a field strength >106 V=m and a trap
depth of 15.5 MHz. At this field strength the effect of the

hyperpolarizability on alkali atom ground states cannot be
neglected [27]. For detunings large compared to the excited
state hyperfine structure we can estimate the magic inten-
sity jΩ0j2 by equating the contributions to the differential
shift from the fourth-order hyperpolarizability and the
hyperfine-mediated polarizability. We have βð1Þ ∼
−ωqΩ2=Δ2 and βð4Þ ∼ Ω4=ðωqΔ2Þ, with ωq the hyperfine
splitting of the two states and Δ the detuning from the
excited state. Thus the magic intensity scales as
I0 ∼ Ω2

0 ≃ ω2
q. The implication is that the hyperpolariz-

ability becomes important at lower intensities in atoms with
smaller ground state hyperfine splitting, e.g., Rubidium
compared to Cesium. Figure 1 illustrates the importance of
the fourth-order and cross terms.
The primary lesson to be drawn from these two terms is

that it is inappropriate to talk about magic wavelengths.
Even if searching purely for magic conditions in one field
the operating laser intensity and magnetic fields are
interdependent and the system is now nonlinear in the
intensity. Adjusting the laser intensity then tunes the
relative strength of these terms and allows for magic
conditions at a more diverse set of wavelengths.
Unfortunately we were unable to find doubly magic

conditions for monochromatic trapping light of any wave-
length and polarization for any pair of states. It is possible
that some elliptical polarization we did not check or just a
more precise calculation could turn up something useful.
What we can say is that for most wavelengths, magnetic
field strengths, pairs of states, and polarizations there is a
magic intensity where first-order sensitivity to the light
intensity is zero. Table I provides examples of magic
intensities for various atomic and field parameters, as well
as the residual field sensitivities. As one can see, despite not
being truly doubly magic, the sensitivity to the magnetic
field can be quite small for some magic intensity con-
ditions, in particular at 945 nm with the unorthodox j4;−1i
and j3; 1i states. If one can stabilize the magnetic field to
100 μG then the above states can have differential shifts of
about 0.1 Hz.
It is worth pointing out some of the trends in Table I.

Increasing the bias magnetic field increases the trap depth
of the magic intensity for the states 0,0. Similarly, increas-
ing the detuning increases the trap depth and decreases the
residual sensitivity to the trapping light. We chose 1.4 G for
the magnetic field since it is very close to the magic
magnetic field for the MF ¼ 0 states with no trapping light
and thus elucidates how important a proper accounting of
the aforementioned cross term is for accurately assessing
magic conditions.
In order to achieve true doubly magic traps we adopt the

idea of Radnaev et al. [14]. They envisioned applying
another laser that would couple the two ground 6s hyper-
fine levels via a two-photon transition where the photon
fields differ in frequency by very near the hyperfine
splitting of the two ground states. Practically, this could
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be accomplished by a high frequency phase modulator that
adds a frequency shifted sideband at approximately the
hyperfine ground splitting, e.g., ωs ∼ ωq ¼ 9.192 GHz in
Cesium. Thus, we obviate the need for another laser and
automatically match the intensity profile of the second light
frequency to that of the primary trapping light.
We modify our computational apparatus to incorporate

dressed ground states that differ by plus or minus a
sideband frequency. Essentially, the Hamiltonian matrix
grows threefold as for each ground state we add two levels
with identical quantum numbers to the original except that
the diagonal element has �ωs, the difference between the
carrier and sideband frequencies. The matrix is then
populated as before. We include an explicit example in
[15]. A fourth-order term that is roughly Vs

ijV
s
ij=ðωq − ωsÞ

arises, where Vs
ij uses the field amplitude of the sideband

and the carrier, i.e., Ω2 → ΩΩs with Ωs the reduced Rabi
frequency of the sideband. This term is much like the
fourth-order term introduced for a single frequency in that it
couples a ground state to the other ground state and back,
but in this case that other state is a dressed state nearly
resonant with the initial state due to the sideband. The
denominator depends on the difference of the sideband

frequencyωs and the clock frequencyωq. This then gives us
two levers with which to adjust this fourth-order term’s
magnitude and sign: the intensity of the sideband and its
frequency. We assume pure σþ polarization for all results
regarding the bichromatic scheme.
Table II presents doubly magic conditions for red and

blue detuned traps with physically feasible parameters.
Bringing the sideband frequency closer to the clock
frequency lowers the magic magnetic field, the trap depth,
and the residual sensitivity to the trapping light. Reducing
the sideband intensity reduces the residual light sensitivity
for a given magic trap depth and magnetic field. Lastly, the
residual magnetic field sensitivity is entirely determined by
the pairs of states chosen and even then is approximately
the same for all pairs at the doubly magic point. Thus,
bichromatic trapping light allows for doubly magic traps
with tunable parameters by adjusting the sideband strength
and frequency.
We conclude by reiterating our results for doubly magic

trapping conditions. Our analysis established that the
fourth-order Stark shift term is vital to differential Stark
shift calculations at typical operating conditions and further
explored the implications of the interaction of the laser and

TABLE I. Intensity magic trap conditions for various wavelengths, light polarizations, pairs of states, and
magnetic fields. Also reported are the first-order sensitivities to the magnetic field, and the second-order sensitivities
to the reduced Rabi frequency. The polarization is either σþ or σ− and the states column lists MF¼4,MF¼3. Finally,
trap depth for blue detuned traps refers to the light shift the atom experiences at the bottom of the trap (see [28] for an
example of blue traps with nonzero intensity minimum) rather than the actual depth of the trap. The ground state
scalar polarizability is negative for the 780 and 820 nm cases so the trap depths are positive, i.e., repulsive potentials.

λ (nm) σ States B (G) Ω=2π (GHz) Trap depth (MHz) ∂δE=∂B (Hz=G) ∂2δE=∂Ω2 (10−18 Hz−1)

1038 þ 0, 0 1.4 158.0 −60.0 −2440 2.50
1038 þ 0, 0 1.0 150.0 −54.3 −2440 2.26
1038 þ 0, 0 0 129.0 −40.3 −2440 1.60
1038 þ 1,−1 1.4 164 −66.5 −3680 2.53
945 þ −1, 1 1.4 70.8 −23.3 −1000 10.4
820 þ 0, 0 1.4 70.4 35.5 −3680 22.4
780 þ 0, 0 1.4 124 49.2 −2720 4.68
780 − 1,−1 1.4 85.6 24.3 1760 2.10

TABLE II. Doubly magic conditions for red and blue detuned traps for different wavelengths, pairs of states,
sideband strengths (ratio of sideband field amplitude to carrier field amplitude), sideband frequency, and the residual
sensitivities to field fluctuations.

λ (nm) States
SB

strength
ωs=2π
(GHz) B (G)

Ω=2π
(GHz)

Trap depth
(MHz)

∂2δE=∂B2

(Hz=G2)
∂2δE=∂Ω2

(10−18 Hz−1)

1038 0, 0 0.1 9.15 1.35 88.3 −19 854 2.49
1038 0, 0 1 8 1.39 63.6 −19.5 854 4.97
1038 1,−1 1 8 3.63 80.7 −32.2 801 7.5
1038 −1, 1 0.1 9 1.78 135 −43.5 801 2.59
920 0, 0 0.1 9.185 0.364 17.7 2.26 854 18.5
920 0, 0 0.1 9.15 1.54 27.2 −5.89 854 34.6
780 0, 0 0.1 9.185 0.27 29.9 2.89 854 3.56
780 0, 0 0.1 9.17 0.798 51.4 8.56 854 4.1
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magnetic fields. Recent experiments have measured the
fourth-order Stark shift contribution to the differential light
shift with Rb atoms and demonstrated the importance of
this effect [29]. With these tools we demonstrate light
insensitive traps for a wide array of wavelengths, pairs of
states, and bias magnetic fields. We then extended our
analysis to a bichromatic trap with two optical frequencies
separated by an amount similar to the splitting of the
hyperfine ground states in Cesium. In doing so, we
discovered doubly magic conditions in red and blue
detuned traps for states separated by only one or two
photons. These results provide a method for obtaining
insensitivity to trapping lasers and magnetic field noise that
could potentially improve atomic clock and quantum
information experiments. Furthermore, we have relaxed
many of the stringent requirements on wavelength, polari-
zation, and states previously reported in the literature,
making magic trapping more accessible to future experi-
ments. We anticipate that similar results will be found for
other alkali atom species.
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