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We show that, for any n, there arem-outcome quantum correlations, withm > n, which are stronger than
any nonsignaling correlation produced from selecting among n-outcome measurements. As a consequence,
for any n, there arem-outcome quantum measurements that cannot be constructed by selecting locally from
the set of n-outcome measurements. This is a property of the set of measurements in quantum theory that is
not mandatory for general probabilistic theories. We also show that this prediction can be tested through
high-precision Bell-type experiments and identify past experiments providing evidence that some of these
strong correlations exist in nature. Finally, we provide a modified version of quantum theory restricted to
having at most n-outcome quantum measurements.
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Introduction.—The violation of Bell inequalities [1–6]
does not only show the impossibility of local realism [7] but
also demonstrates (i) the existence of entangled states, i.e.,
states which cannot be produced by choosing among states
produced locally, and (ii) the existence of incompatible
measurements, i.e., measurements whose outcomes cannot
be obtained from a single joint measurement. Remarkably,
this holds not only assuming quantum theory (QT) but also
holds for the much broader set of general probabilistic
theories (GPTs) [8–11]. GPTs include classical probability
theory and QT, and also theories admitting supraquantum
nonsignaling correlations, such as, e.g., Popescu-Rohrlich
boxes [12].
Svetlichny pointed out that (i) can be refined and that for

any number of parties n, there are correlations predicted by
QT that cannot be explained by any GPT in which all states
are produced by choosing among (n − 1)-partite entangled
states [13–15]. Hence, the violation of n-partite Svetlichny
inequalities [16–19] demonstrates the existence of genu-
inely n-partite entangled states and therefore puts strong
constraints on which GPTs are suitable to describe nature.
Here, we address the problem of whether there is a

sensible way to go beyond (ii) and, assuming that QT is
correct, constrain more rigidly the structure of the set of
measurements in any GPT describing nature. Our main
result is the proof that, according to QT, nature does
produce correlations which cannot be generated by shared
randomness (e.g., by means of local hidden variables) and
nonsignaling correlations for which the number of out-
comes is limited to n. In this sense, we show that quantum
correlations are not n chotomic, for any n ¼ 2; 3;…. This
implies that the same way Bell inequality experiments
exclude all local realistic theories, QT predicts that certain

experiments can exclude all GPTs in which measurements
are locally selected from n-outcome measurements. A
possible selection mechanism, in which all measurements
are produced from two-outcome measurements with the
help of hidden variables, is illustrated in Fig. 1.
However, according to our analysis, such experiments

require visibilities beyond what is currently feasible. This
motivates us to consider a particular subclass of GPTs: those
in which measurements are locally selected from n-outcome
quantum measurements. We identify past experiments

FIG. 1. Illustration of a three-outcome measurement which can
be explained as selecting one from three two-outcome measure-
ments. From the outside, the measurement apparatus (represented
by the outer box) has three outcomes (represented by three lights
of different colors). The state of a physical system tested by the
apparatus is described by ηα, where α ¼ 1, 2, 3 is a variable that is
hidden to the experimenter but can be read off by the measure-
ment apparatus (illustrated by a robot inside the box using a
magnifying glass), without disturbing the state of the system.
From the inside, the measurement apparatus works as follows:
based on the value of α (here, α ¼ 3), a corresponding two-
outcome measurement Dα is selected (as the robot does by
operating the switch selecting the measurement D3).
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which, for n ¼ 2 and n ¼ 3 and under some assumptions,
may be taken as experimental falsifications of this subclass of
GPTs. Finally, we take the possibility seriously that QT does
not account for correlations in nature and provide a modified
version of QT restricted to having at most n-outcome
quantum measurements. This theory shows that nonsignal-
ing correlations for which the number of outcomes is limited
to n constitute an alternative that should be experimentally
tested.
Quantum correlations are not n-chotomic.—For m > n,

the set of m-outcome measurements in QT is strictly larger
than the convex hull of the n-outcome measurements [20].
Hence, there are, e.g., three-outcome quantum measure-
ments which cannot be implemented by choosing one from
a set of two-outcome quantum measurements. Here, we
present a result which goes beyond this observation. We
demonstrate that if QT is correct, then any GPT describing
nature needs to share this property. For this, we prove the
yet more general result that any GPT not having this
property cannot reproduce the correlations predicted by
QT. This result only depends on properties of correlations
and does not rely on how the preparation and measurement
devices work. Therefore, it enables us to exclude all those
GPTs in a device-independent way.
Suppose that two parties can perform several measure-

ments on a bipartite system and that each party can
independently choose among the measurements settings.
For a fixed measurement setting μ on the first party and ν on
the second party, we write Pμ;νðk;lÞ for the probability to
obtain the corresponding outcomes k and l. A set of such
correlations is nonsignaling, if

P
lPμ;νðk;lÞ≡ Pμ;−ðkÞ is

independent of ν and
P

kPμ;νðk;lÞ≡ P−;νðlÞ is indepen-
dent ofμ.We are now interested in the casewhere the number
of measurement outcomes is limited to n; i.e., the measure-
ments are n chotomic. An n-chotomic local measurement
obeys Pμ;−ðkÞ ¼ 0 for all k, except for a subset of size n, or,
similarly, P−;νðlÞ ¼ 0 for all l, except for a subset of size n.
The set of nonsignaling n-chotomic correlations Pn is
then the convex hull of the set of nonsignaling correlations
where all measurements are, at most, n chotomic.
We address the question of whether the set of quantum

correlations contains correlations that are not in Pn
by considering the combinations of correlations in the
Collins-Gisin-Linden-Massar-Popescu inequalities [21] in
the formulation of Zohren and Gill [22], namely,

I0ðPÞ ¼ P2;2ðk < lÞ þ P1;2ðk > lÞ þ P1;1ðk < lÞ
þ P2;1ðk ≥ lÞ; ð1Þ

where P2;2ðk < lÞ ¼ P
k<lP2;2ðk;lÞ, and similarly for the

other terms. I0 can be evaluated for any set of bipartite
correlations P which features at least two measurement
settings per party. We can now state our main result.
Theorem 1: For any n, there is an m > n and quantum

correlations Q ∈ Pm, such that I0ðQÞ < inf½I0ðPnÞ�.

Proof.—It has been shown [23] that for any ε > 0,
there exists an m and some quantum correlations Q ∈ Pm
such that I0ðQÞ < ε. In Appendix A, we prove that
qn ≡ inf½I0ðPnÞ� > 0 for any n. Therefore, by choosing
ε ¼ qn=2, the assertion follows. ▪
This proves that, for any n, there are quantum correlations

which are not nonsignaling n chotomic. For example, the
hypothetical Popescu-Rohrlich box [12] is a GPT predicting
correlations that are impossible according to QT. However,
this GPT only contains dichotomic measurements. Hence,
Theorem 1 reveals that QT contains correlations that
are impossible to achieve for a Popescu-Rohrlich box.
Consequence 2: QT contains correlations that cannot be
explained by dichotomic GPTs, even if we admit supra-
quantum correlations, such as Popescu-Rohrlich boxes.
Experiments.—Theorem 1 gives rise to the question:

Is it feasible to experimentally demonstrate the existence
of correlations which cannot be explained by n-chotomic
GPTs with current quantum technology? As shown in
Theorem 1, in principle, we could use experiments aiming
to violate I0 for this purpose. However, in practice, this
approach is rather unfeasible since, even for excluding
dichotomic GPTs, we would need to observe a value of I0

below 1
2
, something that requires quantum measurements

with at least ten outcomes [22]. Further investigation is
therefore needed in order to identify inequalities with more
modest experimental demands.
As a first step in this direction, we explore whether it is

possible to experimentally exclude GPTs in which measure-
ments are produced by selecting from, at most, n-outcome
quantum measurements. These GPTs constitute interesting
variants of QT in which the sets of measurements are
arguably simpler than the one of QT, as we discuss below.
In addition, unlikemost alternatives toQT investigated in the
past (e.g., local realistic theories), they share most of the
predictions ofQT, including theviolationofBell inequalities.
For this purpose, we compute the upper bounds on 1 − I0

for GPTs for dichotomic and trichotomic quantum mea-
surements when the outcomes k, l take values 1,2,3 (I3) or
values 1,2,3,4 (I4). We observe that although violating the
resulting inequalities is experimentally demanding, there
is already experimental evidence [24–26] supporting that
there are measurements which cannot be explained choos-
ing from quantum dichotomic or quantum trichotomic
measurements. Interestingly, when we compute the upper
bounds for the bipartite all-versus-nothing Bell inequality
with three four-outcome measurements [27], we observe
that the results of a previous experiment show a clear
violation of the quantum trichotomic bound [28]. This
suggests that this inequality can be a powerful tool to
provide conclusive evidence of the existence of genuinely
nontrichotomic quantum measurements. We also compute
the upper bounds of an inequality due to Vértesi and Bene
[29] which, so far, has not been tested experimentally.
However, it is a priori interesting for our considerations,
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since it can be violated by a two-qubit system.
Unfortunately, we find that the visibility required to falsify
dichotomic quantum measurements using the Vértesi-Bene
inequality is too high for current experiments.
We have summarized all our calculations and the

significant experimental results in Table I. The methods
that we have used for calculating the upper bounds are
described in Appendix B. It is important to remark that all
mentioned experiments fail to satisfy several of the con-
ditions needed to extract loophole-free conclusions. For
example, all of them require the fair sampling assumption
due to the low detection efficiency. Furthermore, in all of
these experiments, locality is assumed rather than enforced
by spacelike separation. Most critically, in all studied cases,
the n-outcome measurements are actually implemented
using dichotomic measurements due to a limited number of
detectors. But, the existing experiments suggest that a
loophole-free version of these experiments is within current
experimental reach and can demonstrate the existence of
genuinely nondichotomic and nontrichotomic quantum
measurements.
At this point, the conclusion is that there is already

evidence that there are correlations in nature which cannot
be explained by GPTs with dichotomic and trichotomic
quantummeasurements. However, more experimental effort
is needed for a loophole-free confirmation of this result,
and even more theoretical and experimental effort is needed
for demonstrating correlations which cannot be explained
by more general GPTs with dichotomic measurements.

Probabilistic theories with n-chotomic measurements.—
Our main result, Theorem 1, establishes that nonsignaling
n-chotomic correlations P ∈ Pn cannot explain all quantum
correlations. In this section, we take the possibility seriously
that QT does not account for correlations in nature and we
argue how n-chotomic measurements with fixed n may
constituteaplausiblealternativetotheconstructionusedinQT.
The first argument is the observation that, even in the

everyday use of QT, we find situations in which the set of
actual measurements is only a subset of the set of
measurements possible a priori. One example is the
superselection rules arising from the nonexistence of
certain ways of manipulating a system and the constraints
on its time evolution [31]. Another example arises when
quantum systems can only be manipulated locally. There,
the standard paradigm is the paradigm of local operations
and classical communication in which several separated
parties have access to a shared composite quantum system
but there is no quantum interaction between the parts.
Consequently, there are outcomes of two-outcome mea-
surements that cannot participate in certain measurements
with more than two outcomes [32,33].
The second argument why n-chotomic measurements

may be a plausible alternative to QT is its simplicity. From
the perspective of GPTs, the fact that a theory includes
measurements which cannot be created by choosing from
two-outcome measurements is surprising: Any measure-
ment with more than two outcomes can be coarse grained to
a two-outcome measurement (k, not k), simply by only
distinguishing between the outcome labeled k and any
other outcome. Now, consider the converse problem.
Suppose that we have the set of all two-outcome measure-
ments of a GPT and we want to construct the set of all
measurements with any number of outcomes. Then, the
arguably simplest way to do it is as it is illustrated in Fig. 1,
i.e., by selecting from two-outcome measurements. The
fact that this is not the case in QT tells us that QT is, in this
sense, very special. Fortunately, Theorem 1 shows that we
can test whether nature is special in this sense.
The third argument is that there is nothing a priori

problematic in a dichotomic theory. To illustrate this point,
we develop a dichotomic theory based on QT. For this
purpose, it is enough to consider experiments consisting of
two stages, the preparation stage and themeasurement stage.
In standard QT, a preparation is described by a density
operator ϱ and a measurement by a family of positive
semidefinite operators ðE1; E2;…Þ summing to 1, so that
the probability to obtain outcome k is given by trðEkϱÞ.
A straightforward example where two-outcome measure-

ments are insufficient is a measurement which can perfectly
distinguish between more than two states so that trðϱlEkÞ ¼
δl;k, where δl;k denotes the Kronecker delta. However, there
is nothing particularly characteristic ofQTin this example, as
already in our everyday classical experience we can easily
distinguish different preparations—for example, the six

TABLE I. Upper bounds on correlations, required visibility,
and experimental results. Values with an asterisk have been
established in prior work. VB stands for the combination of
correlations in the Vértesi-Bene inequality [29], In for 1 − I0 with
possible outcomes k, l ¼ 1; 2;…; n, and AN for the correlations
in an all-versus-nothing inequality [27]. The rows two-outcome,
three-outcome, and quantum list upper bounds when quantum
measurements have only two, only three, or an unrestricted
number of outcomes, respectively. In the rows two-visibility
and three-visibility, the required visibility [absence of white
noise, i.e., minimal p if the prepared state is a mixture of
the target state and a completely depolarized state ϱprepared ¼
pϱtarget þ ð1 − pÞϱdepolarized] is shown, where the former is for
violating the two-outcome bound and the latter for violating the
three-outcome bound. In the last rows, observed experimental
violations of the two-outcome and three-outcome bounds are
shown, in terms of multiples of statistical standard deviations.

VB [29] I3 [21,30] I4 [21] AN [27]

Two-outcome 21.068� 0.20711 0.20711 8.1962
Three-outcome � � � � � � 0.30495 8.1962
Quantum 21.090� 0.30495� 0.36476� 9.0000�
Two-visibility 99.97% 90% 86% 92%
Three-visibility � � � � � � 95% 92%
Experiment None Ref. [24] Ref. [25] Ref. [28]
Two-violation 5.5σ 16σ 70σ
Three-violation � � � � � � 4.3σ 70σ
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distinct outcomes of a die. In order to be able to separate this
trivial example from the case we are interested in, we
consider a modification of QT. Imagine that the state
preparation does not only prepare the quantum state but, in
addition, transmits some information, e.g., an integer valueα.
In turn, the measurement apparatus is sensitive to α and can
exhibit different behavior depending on α. This means that α
carries some classical information, e.g., which state ϱk was
prepared or which side of the die is up, covering the
aforementioned situation; see also Fig. 1. In fact, this
scenario is more realistic than it may seem. For example,
in a photon experiment, the halfwave plate used to prepare
different polarization states may introduce a slight shift in
momentum, and it may happen that the analyzing setup is
sensible to this shift and gives a different response, depending
on the momentum.
A general formalism to capture this situation is to modify

the standard formulation of QT by replacing the density
operator ϱ by positive semidefinite operators ðη1;η2;…Þ≡ η
obeying

P
αtrðηαÞ ¼ 1 and to substitute each operator Ek

by positive semidefinite operators ðD1;k; D2;k;…Þ≡ D
such that

P
kDα;k ¼ 1 for each α. If there is no other

sensitivity to α, then outcome k will have probability
PðkÞ ¼ P

αtrðηαDα;kÞ. If we restrict the quantum part of
the measurements to be trivial, i.e., allDα;k are either 1 or 0,
then, effectively, we would have a hidden variable model.
If, for each α, at most two operatorsDα;k are nonzero, then,
on a fundamental level, all measurements are dichotomic,
and similarly for the n-chotomic case.
Let us now use the above example to illustrate why at

least bipartite correlations are required to falsify these
GPTs. For a single party, we can always explain a posteriori
any experiment in which the correlations of certain states
ηðμÞ and measurements DðνÞ are considered. Indeed, we

may let DðνÞ
α;k ¼ pðα;νÞ

k and ηðμÞα ¼ δα;μ, where pðμ;νÞ
k are

probability distributions that do not contradict the obser-
vations. Away to inhibit such constructions is to move into
a setup in which a system is distributed between two parties
and each of them performs local measurements. Then,
instead of preparing states ηðμÞ and performing measure-
ments DðνÞ, both parties perform independent local mea-
surements D0ðμÞ and DðνÞ, respectively, on a fixed bipartite
state η. The resulting observations are then distributed
according to the correlations

Pμ;νðk;lÞ ¼
X

α0;α

trðηα0;αD0ðμÞ
α0;k ⊗ DðνÞ

α;lÞ: ð2Þ

When all local measurements are at most n chotomic, then,
by construction, these correlations are nonsignaling n
chotomic and are therefore subject to Theorem 1.
Conclusions.—Quantum theory is in agreement with all

existing experimental evidence. Therefore, when exploring
alternative theories to QT, it is sensible to focus on those
giving similar predictions. In this Letter, we have studied a

large class of such alternative theories. We have considered
a class of general probabilistic theories in which the set of
measurements is constructed by selecting from measure-
ments with n outcomes. For any n, these theories satisfy
Bell-type inequalities which are violated by QT. Testing
this prediction is a fundamental challenge for the future, as
it would demonstrate that correlations in nature are stronger
than those allowed by theories which, in other experiments,
produce correlations exceeding those of QT, e.g., as it is the
case for Popescu-Rohrlich boxes. However, this challenge
is difficult and will require further efforts both in theory and
experiments.
Meanwhile, as an example of the kind of tools that will

be needed, we have considered theories with the same set of
n-outcome measurements than QT for a fixed n, but such
that any measurement with more outcomes is constructed
by selecting measurements with only n outcomes. These
theories share meany features with QT and can, e.g.,
explain the violation of Bell inequalities. However, we
have shown that these alternative theories satisfy certain
Bell-type inequalities which are violated by QT. The
violations predicted by QT are very small, and testing
them requires high-precision experiments. We have iden-
tified previous experiments which, up to some assumptions,
seem to rule out these theories for n ¼ 2 and n ¼ 3.
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APPENDIX A: PROOF OF THEOREM 1

For the remaining step in the proof of Theorem 1, we
assume without loss of generality that all measurement
outcomes are labeled k, l ¼ 1; 2;…, and we define Pn;r
as the subset of Pn for which the maximal index k or l is at
most r. We show that (a) inf½I0ðPn;rÞ� ≥ 21−r for any r and
(b) I0ðPn;r0 Þ ¼ I0ðPnÞ for some r0. It follows that
inf½I0ðPnÞ� ¼ inf½I0ðPn;r0 Þ� ≥ 21−r

0
> 0 holds, which is the

statement needed in order to complete the proof in the main
text. (a) For arbitrary correlations P ∈ Pn;r, we denote by
P0 ∈ Pn;r−1 the correlations where in P the rth outcomes are
merged with the first outcomes. This implies Pμ;ν

0ðk ≥ lÞ ¼
Pμ;νðk ≥ lÞ þ P−;νðrÞ − Pμ;−ðrÞ þ Pμ;νðr; 1Þ, and there-
fore, I0ðP0Þ ¼ I0ðPÞ − ½P2;2ðr; 1Þ þ P1;2ð1; rÞ þ P1;1ðr; 1Þ−
P2;1ðr; 1Þ� ≤ I0ðPÞ þ P2;1ðr; 1Þ ≤ 2I0ðPÞ. By induction and
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due to I0ðPn;1Þ ¼ f1g, we have 21−r ≤ I0ðPÞ. (b) We con-
sider the set ~Pn of those correlations which can be created
from the correlations in Pn;n by applying all changes of the
labels of the outcomes λ0μ∶1;…; n → N, and similarly λν, via
Pμ;νðk;lÞ ↦ Pμ;ν(λ

0
μðkÞ; λνðlÞ), while all other correlation

terms are 0. This does not yield more than 4n2 logical
relations like λμðkÞ < λνðlÞ in I0, and hence, at most 24n

2

different labelings are needed to reach all logical relations.
Since this is a finite set, there is an integer r0 denoting the
maximal resulting index in the labelings, and therefore,
I0ðPn;r0 Þ⊇I0ð ~PnÞ. By definition,Pn is the convex hull of ~Pn,
so that I0ð ~PnÞ ¼ I0ðPnÞ follows from the fact that I0 is affine.
Therefore, I0ðPn;r0 Þ ¼ I0ðPnÞ holds due to Pn;r0⊆Pn.

APPENDIX B: QUANTUM n-CHOTOMIC
BOUNDS IN TABLE I

The maximal quantum value is known for some inequal-
ities, or it can be numerically approximated by a hierarchy of
semidefinite programs suggested byNavascués, Pironio, and
Acín [34]. For n-chotomic quantum measurements, one can
proceed similarly, since it is enough to maximize the value
of the inequality, but with the additional assumption that at
most n measurement outcomes are nontrivial. By exploring
all possible combinations with n nontrivial outcomes and
calculating the maximal bound for each of these cases, we
obtain the n-chotomic bounds provided in Table I.
We used the third level of the hierarchy for thevalues in the

rows labeled two-outcome and three-outcome. Since this is
an upper approximation on the true value, these values are
at most too pessimistic. For the values in the row labeled
quantum, the given values are for certain quantum states and
measurements. This value is optimal for AN, and the value
coincides with the bound from the second level of the
hierarchy for I3 and I4. Only for VB does the third level
of the hierarchy give a slightly larger value 21.092 > 21.090.
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