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Nonaligning self-propelled particles with purely repulsive excluded volume interactions undergo
athermal motility-induced phase separation into a dilute gas and a dense cluster phase. Here, we use
enhanced sampling computational methods and analytic theory to examine the kinetics of formation of the
dense phase. Despite the intrinsically nonequilibrium nature of the phase transition, we show that the
kinetics can be described using an approach analogous to equilibrium classical nucleation theory, governed
by an effective free energy of cluster formation with identifiable bulk and surface terms. The theory
captures the location of the binodal, nucleation rates as a function of supersaturation, and the cluster size
distributions below the binodal, while discrepancies in the metastable region reveal additional physics
about the early stages of active crystal formation. The success of the theory shows that a framework similar
to equilibrium thermodynamics can be obtained directly from the microdynamics of an active system, and
can be used to describe the kinetics of evolution toward nonequilibrium steady states.
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Active fluids consisting of self-propelled units are
present in many biological systems, including the cell
cytoplasm [1–3], bacterial suspensions [4–7], and animal
flocks [8–11]. Recently, researchers have also developed
synthetic active fluids, consisting of chemically [12–20]
or electrically [21] propelled colloids, or monolayers of
vibrated granular particles [22–25]. Being intrinsically
nonequilibrium, active fluids cannot be described by
equilibrium statistical mechanics [26,27] and exhibit
behaviors not possible in equilibrium systems, such as
spontaneous flow [28–41] and athermal phase separation
[42–52]. Yet, active systems frequently evolve to well-
defined time-independent distributions, and in some cases
are characterized by equilibriumlike state variables such
as temperature or pressure [50,53–60]. While significant
progress has been made toward understanding these sta-
tionary distributions, the kinetics of evolution toward the
steady state remain poorly understood.
As in equilibrium physics, progress in active matter often

stems from simplified model systems. One such system
is composed of active Brownian particles (ABPs): self-
propelled particles which interact solely by short-range
isotropic repulsion. Despite lacking interparticle attractions
or alignment interactions, ABPs form macroscopic, crys-
talline clusters [18–20,42–47,49,61,62]. (This is an exam-
ple of a generic instability toward density inhomogeneity,
motility-induced phase separation (MIPS), which can
arise when particle velocities decrease with increasing
local particle density [44,49,63]). ABP phase separation
is strikingly reminiscent of equilibrium vapor-liquid sys-
tems, with the densities of the coexisting phases falling
along a binodal, and critical-like behavior near its apex.
As a minimal model system possessing nontrivial phase
behavior, ABPs are ideal for studying evolution toward the

steady state in generic active systems. However, while the
coarsening of deeply quenched ABP clusters has been
studied numerically [43,44,47], there is no theory for the
complete kinetics of phase separation. Moreover, while
existing phenomenological descriptions of ABPs have led
to important insights about MIPS [44,64–66], there is
currently no approach to directly calculate phase behavior
from the microdynamics of a particle-based model.
To overcome these limitations, we describe ABP cluster-

ing dynamics and steady-state phase behavior with a
theory analogous to classical nucleation theory (CNT)
for equilibrium phase separation [67–69]. Beginning with
a geometric picture of ABP interactions, we construct an
effective free energy of cluster formation which resembles
that of droplet nucleation in an equilibrium liquid-vapor
system. We then apply the framework of CNT to calculate
nucleation rates and determine phase behavior as functions
of particle density and propulsion velocity.
While previous descriptions of ABP phase separation are

based on a functional ansatz at the level of pair correlations
or the dependence of particle velocities on local density
[44,64–66], here we show how such frameworks emerge
from the kinetics of the microscopic model. In particular,
our theory leads to a simple relationship between the
microscopic parameters of an ABP model and the driving
force for ABP phase separation (analogous to the chemical
potential difference between dense and dilute phases in
equilibrium phase separation).
We test the theory against simulations of ABPs, employ-

ing enhanced sampling techniques to make systematic
measurements of nucleation rates. Despite approximations
in our microscopic model, the predicted phase boundary
matches simulation results almost quantitatively, with
no adjustable parameters. Moreover, the predicted and
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measured cluster size distributions match well below the
binodal, though we discuss interesting effects of nontrivial
cluster geometry that lead to power law scaling in the
metastable regime. The theory qualitatively predicts the
dependence of nucleation rates on supersaturation,
although significant quantitative differences are seen near
the binodal.
In the last century, CNT drove tremendous advances in

the fields of equilibrium crystallization and self-assembly
by relating particle-scale interactions to their macroscale
assembly dynamics. The framework described here moves
toward a similar capability in active materials, showing
how the breaking of time-reversal symmetry at the level
of individual particles controls emergent nonequilibrium
assembly.
Model.—ABPs in two dimensions obey the overdamped

Langevin equations:

_ri ¼ FðfrigÞ=ξþ vpν̂i þ
ffiffiffiffiffiffiffi
2D

p
ηTi ; ð1Þ

_θi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ηRi : ð2Þ

Here F represents the interparticle repulsion force, ξ is
the drag, vp is the magnitude of the self-propulsion velocity,
and ν̂i ¼ ðcos θi; sin θiÞ. The η variables introduce
Gaussian noise, with hηiðtÞi ¼ 0 and hηiðtÞηjðt0Þi ¼
δijδðt − t0Þ. Although the noise may be nonthermal, we
set Dr ¼ ð3D=σ2Þ (with σ the particle diameter) as would
apply to a sphere in the low-Reynolds-number regime.
Because of the self-replenishing velocity vp, collisions

between particles are rendered persistent, which leads to
cluster formation from the dilute phase. To model such
cluster formation in equilibrium systems, CNT assumes a
free energy of the form GðnÞ ¼ ΔμVðnÞ þ γAðnÞ, with n
the number of molecules in the droplet, VðnÞ and AðnÞ the
droplet volume and surface area, Δμ the chemical potential
difference between the dense and dilute phases, and γ the
surface tension. This assumption, together with the Becker-
Döring description of cluster growth kinetics [70], allows
predicting nucleation rates as a function of material con-
stants and concentrations.
Since ABP phase separation is intrinsically nonequili-

brium, the same prescription cannot be directly applied.
Therefore, we take the opposite approach, starting from
the Becker-Döring kinetics and inferring an effective free
energy landscape. To this end, we assume that the state of
an ABP system may be represented at the mesoscopic level
by the number density ρn of clusters with n particles
(previous studies [43,71,72] have shown that polarization
of particle orientations on cluster peripheries is also an
important reaction coordinate; this effect enters implicitly
in our kinetic model below). The evolution of ρn is then
given by a hierarchy of master equations accounting for
events such as cluster growth, depletion, merging, and
fragmenting. In our case, simulations additionally show

that the system is well mixed and clusters evolve primarily
through gain and loss of individual monomers from their
perimeters. Under these conditions, the master equations
take on the simple form,

∂tρn ¼ Jðn − 1Þ − JðnÞ; ð3Þ

JðnÞ ¼ jinðnÞSðnÞρn − joutðnþ 1ÞSðnþ 1Þρnþ1; ð4Þ

where the fluxes jin and jout represent the rates of monomer
gain and loss per unit of cluster surface and SðnÞ is the
surface area (perimeter) of a cluster of size n.
To gain insight into the phase behavior and kinetics of

the system, we first consider a steady state in which the
fluxes J are zero. While the existence of such steady states
in the physical system is not guaranteed, they are con-
sistently observed in simulations [42–47,62,71]. In the
absence of phase separation, the steady state corresponds to
free monomers coexisting with small, transient clusters.
The steady-state cluster size distribution (CSD)PðnÞ can be
calculated by iterating Eq. (4):

ρn ¼ ρ1
Yn−1
m¼1

jinðmÞSðmÞ
joutðmþ 1ÞSðmþ 1Þ≡ ρ1PðnÞ: ð5Þ

Within the phase separation regime, our simulations
identify a parameter range within which nucleation is slow
in comparison to the settling time of the CSD (analogous to
the metastable region between the binodal and the spinodal
in an equilibrium system). In these cases the CSD may still
be taken to be (quasi) stationary, ∂tρn ¼ 0, but to access the
slow nucleation dynamics we now must acknowledge a
small nonzero flux JðnÞ. Under these conditions the fluxes
J are equal and given by [73]

J ¼ ρ1

�X∞
n¼1

1

jinðnÞSðnÞPðnÞ
�−1

: ð6Þ

The mean nucleation time in a system with volume V is
then τnucl ¼ ðJVÞ−1 [67].
To proceed further, we construct a minimal microscopic

model that enables estimating the adsorption and evapo-
ration fluxes. We model each cluster as circular, with
volume VðnÞ ¼ n=ρc and surface area SðnÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πn=ρc
p

,
with ρc near the close-packing density for spheres. Using
basic arguments for how particles adsorb on and depart
from clusters [43,71,73], we obtain jin ¼ ðρgvp=πÞ and
joutðnÞ ¼ ðDr=σÞ½π=2αðnÞ�2, where ρg is the monomer
density in the “free volume” not occupied by clusters
(different from ρ1), and αðnÞ ¼ 1

2
½π − sin−1ðσÞ=2rðnÞ� is

the “horizon angle” taking into account cluster curvature
(Fig. 1) [74].
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Plugging in to Eq. (5), we have,

PðnÞ ¼ ðzρgÞn−1ffiffiffi
n

p P0ðnÞ; ð7Þ

where z ¼ ðvpσ=πDrÞ is analogous to the Péclet number
(Pe), and P0ðnÞ ¼ ½Qn−1

m¼1ð2αðmþ 1Þ=πÞ�2 accounts for the
geometric effects of cluster size.
At this stage the kinetic theory is complete, and we can

use the above formulas directly to compute quantities of
interest. On the other hand, we may continue the analogy
with CNT by considering an effective free energy GðnÞ
(analogous to the grand potential in equilibrium statistical
mechanics). Since in equilibrium fluctuation theory we
would have ρn ∝ exp ½−GðnÞ=ðkBTÞ�, we write

GðnÞ ¼ −kBT ln ðσ2ρnÞ: ð8Þ

Defined as such, GðnÞ serves as a natural formulation of
the kinetic theory in terms of a functional landscape. In
particular, we note that the existence of such an effective
free energy landscape depends only on the presence of a
(quasi)-steady state [Eq. (5)], and is not contingent on a
thermodynamic interpretation.
Results.— Working within the effective free energy

picture, we use Eqs. (7) and (8) to obtain

GðnÞ ¼ −kBT
�
n lnðzρgÞ −½ lnðnÞ þ ln ½P0ðnÞ�

�
; ð9Þ

where terms not depending on n have been dropped. It is
evident that the quantity zρg controls the phase behavior
of the system, and is analogous to the supersaturation of
the fluid phase. As shown in Fig. 1, GðnÞ is monotonically
increasing when zρg < 1, corresponding to a homogeneous
fluid, while for 1 < zρg <

ffiffiffi
2

p ð2αð2Þ=πÞ2 ≈ 2.42 it

exhibits a barrier followed by a monotonic decrease,
corresponding to a supersaturated fluid which is metastable
to cluster nucleation. At higher values (beyond the
“spinodal”), GðnÞ is monotonically decreasing and the
system is unstable towards cluster formation.
For large clusters, P0 can be simplified to (see Sec. D

of [73]):

GðnÞ ¼ −kBT
�
lnðzρgÞn −

σρc
π

SðnÞ
�
þOðln nÞ: ð10Þ

From this, we see that a geometric understanding of ABP
microdynamics leads naturally to their equilibriumlike
phase behavior. Based on its role in governing the phase
behavior of the system, the first term in Eq. (10) controls
the relative propensity of a particle to be in the dilute or
dense phase. Thus, in analogy with the equilibrium CNT
free energy, this term represents the difference in effective
chemical potential Δμ between the two phases. Our
expression Δμ ¼ ln½ðvpσ=πDrÞρg� has similar structure
to the chemical potential Δμ ¼ lnðρÞ þ ln ½vpðρÞ� (ρ being
a coarse-grained density field) considered in the continuum
theory of Stenhammar et al. [44]. The crucial difference
here is the explicit appearance of the microscopic diffusion
constant Dr in place of the functional ansatz vpðρÞ. The
second term in Eq. (10) is related to the cluster’s surface
area, and can be interpreted as an effective line tension that
drives coarsening. Note that in a nonequilibrium system,
this need not equal the mechanical line tension, and, in fact,
Bialke et al. [66] measured a negative mechanical line
tension for a flat interface in an ABP system. Because the
excess free energy associated with interface formation must
be positive for stability, Bialke et al. suggest the negative
line tension is balanced by a positive interfacial stiffness.
Since the line tension emerges from our calculation as a
consequence of cluster curvature [expressed through the
horizon angle αðnÞ] there may be a connection to the Bialke
et al.measurement, but comparisons at additional values of
Pe are needed to explore this possibility. Finally, solving
ΔGðnÞ ¼ 0 gives a prediction for the critical nucleus size as
ncrit ¼ σ2ρc=π½lnðzρgÞ�2, a form familiar from CNT.
Next, we demonstrate the quantitative insights of the

theory into ABP systems. Our simulations are performed as
in Ref. [43] (see Ref. [73] for details), though to measure
nucleation times much larger than those accessible in brute
force simulations, we used a weighted-ensemble dynamics
[75–77]. To limit finite-sized effects in the NVT simula-
tions, we consider systems with 15000 particles, thus
providing a good estimate of nucleation rates except very
near the binodal where the critical nucleus size approaches
the system size [78]. Also, since the control parameter in
our NVT simulations is the overall volume fraction ϕ,
whereas in the theory it is the theoretical gas density ρg, we
must construct a coordinate transformation which relates
the two [73]:

FIG. 1. Left: Depiction of the influence of curvature. The angle
α represents the width of the “horizon” above which a particle’s
propulsion must point in order for it to escape. Right: Effective
free energy as a function of the supersaturation zρg, in the
single-phase region (black), at the binodal (red), in the metastable
region showing a nucleation barrier (green), and in the spinodal
regime (blue).
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ϕ ¼ Aρc
ð4=πσ2ÞA − 1þ ρc=ρg

; ð11Þ

where A ¼ ðπσ2=4ÞPnmax
n¼1 nPðnÞ with nmax a cutoff cluster

size [73]. Finally, to make our comparison with simulations
quantitative, we empirically fit the upper binodal by
measuring the density within large clusters, ρcðvpÞ, which
is found to increase with vp due to the imperfectly hard
interaction potential [73]. The resulting phase diagram is
shown in Fig. 2. The predicted lower binodal is remarkably
close to its measured location, although this could be partly
fortuitous.
We now employ Eqs. (11) and (6) to compute the mean

nucleation time in the metastable regime. Here we find that
the theory, thus far constructed without adjustable param-
eters, lacks quantitative accuracy because the predicted
nucleation rate is exquisitely sensitive to small perturba-
tions of zρg. To enable qualitative comparisons, we set
ρeffg ¼ χρg, with χ a fitting parameter that adjusts the
monomer chemical potential. We find (by eye) that setting
χ ¼ 0.71 produces good correspondence with simulation
(Fig. 3). Nucleation rates are notoriously difficult to
quantitatively predict from first principles even in the
equilibrium case (e.g., Refs. [83–87]), so the correspon-
dence between theory and simulation with a single small
fitting parameter is notable.

Finally, we compare the theoretical and simulated CSDs
in Fig. 4. Below and slightly above the binodal, the theory
has the correct functional form, but far into the metastable
region fails to account for power law scaling ρn ∝ n−2

below a threshold cluster size, indicative of logarithmic
corrections to GðnÞ [88]. Similarly, Levis et al. [89],
observed power law scaling with exponent 1.70� 0.05
in a related model system.

FIG. 2. Plot of the lower binodal and a few isocritical lines as
computed from our kinetic theory. Black dots denote the location
of the binodal as measured from simulations, showing remarkable
agreement with the theoretical prediction. Inset: An expanded
view of the phase diagram, showing additionally the upper
binodal (black dots) and the lower spinodal (red squares) as
measured from simulations [73]. The open circles denote systems
observed in simulations to be single-phase, thereby demarcating
the approximate location of the phase boundary near the critical
point (dashed black line).

FIG. 3. Mean nucleation times as computed from the full
kinetic expression [Eq. (6), red], and by applying an Arrhenius
form to the height of the nucleation barrier [Eq. (9), green]. The
latter approach does not supply the kinetic prefactor, which must
be determined by fitting. Nucleation rates as measured by
weighted ensemble dynamics simulations are shown in black.

FIG. 4. Top: Cluster size distributions (CSDs), as predicted by
Eq. (5) (left) and as measured in simulations for vp ¼ 100 (right).
Data are colored based on their location in the phase diagram:
black for single phase, red at the binodal, and green in the
metastable regime. Bottom left: Averaged incoming and outgoing
rates in units of [monomers or (cluster × time)] from simulations
above the binodal, with zρg ¼ 1.04. Bottom right: Comparison of
the CSDs at zρg ¼ 1.04 from simulations (solid) and as recon-
structed from the simulated rates (dashed).
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In equilibrium CNT, logarithmic corrections in the free
energy have been obtained by accounting for degrees of
freedom internal to a cluster, representing deviations from a
spherical shape (e.g. [90–92]). Our results suggest analo-
gous mechanisms play a role here. Simulations show that
clusters have ramified structure, with a fractal surface area
scaling SðnÞ ∼ n0.64�0.01 [73]. Indeed, directly measuring
fluxes (Fig. 4) shows deviations from what is expected for
large spherical clusters: Simulated rates are larger than
predicted by the theory, with the outgoing rates depending
on vp. These attributes are consistent with complex cluster
geometry, since on small clusters or near regions of high
curvature, particles can escape by “sliding off” each other
before completely rotating to the horizon, thus resulting
in a higher than predicted, vp-dependent outgoing rate.
Multiparticle escape events may also contribute [43]. To
test whether these mechanisms are responsible for the
power law scaling, we fed the measured rates into Eq. (5) to
reconstruct the CSDs, which showed good agreement with
simulation (Fig. 4). Similar results were obtained elsewhere
in the phase diagram (see Ref. [73]). Thus, a calculation of
the rates which takes these effects into account should
recover the scaling of simulated CSDs.
In summary, we have shown that an approach analogous

to classical nucleation theory can describe the nonequili-
brium nucleation of clusters from solutions of ABPs. By
linking the microscopic parameters of ABPs to their
macroscale kinetics, this framework makes an important
step toward developing design principles for applications of
motility-induced phase separation [93].
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