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We propose a dynamical scheme for measuring the full-counting statistics in a mesoscopic conductor
using an electronic Mach-Zehnder interferometer. The conductor couples capacitively to one arm of the
interferometer and causes a phase shift which is proportional to the number of transferred charges.
Importantly, the full-counting statistics can be obtained from average current measurements at the outputs
of the interferometer. The counting field can be controlled by varying the time delay between two separate
voltage signals applied to the conductor and the interferometer, respectively. As a specific application, we
consider measuring the entanglement entropy generated by partitioning electrons on a quantum point
contact. Our scheme is robust against moderate environmental dephasing and may be realized thanks to
recent advances in gigahertz quantum electronics.
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Introduction.—Full-counting statistics (FCS) is a central
concept in mesoscopic physics [1–3]. The distribution of
charge transfers contains information about the elementary
conduction processes [4–8]. Full-counting statistics has
found widespread use in theories of quantum electronic
circuits, for instance, in proposals for detecting entangle-
ment [9,10], revealing interactions [11,12], understanding
quasiprobabilities [13–16], or observing Majorana modes
[17–21]. Intimate connections to fluctuation relations
at the nanoscale [22–29] and to entanglement entropy in
fermionic many-body systems [30–34] have also been
discovered.
Despite these promising applications, experiments

remain scarce. Measurements of FCS are demanding, as
they require the accurate detection of rare events in the tails
of the distributions. For quantum-dot systems, progress has
been made using real-time charge detectors [35–40]. By
contrast, for phase-coherent transport in mesoscopic con-
ductors, only the first few cumulants of the current have
been measured [41–45]. To measure the FCS, it has been
suggested to use a spin to sense the magnetic field
generated by the electrical current in a mesoscopic con-
ductor [1,46,47]. However, being experimentally challeng-
ing, this proposal has not yet come to fruition.
Now, progress in gigahertz quantum electronics is

changing these perspectives [48]. Coherent electrons can
be emitted on demand from quantum capacitors [49,50],
and clean single-particle excitations can be generated using
Lorentzian voltage pulses [51,52]. In parallel with these
developments, electronic interferometers have emerged as
powerful detectors of weak signals [53,54]. Mach-Zehnder
interferometers can be realized using quantum Hall edge
states with quantum point contacts (QPCs) acting as
electronic beam splitters [55–61]. When combined, these
building blocks may form the basis for the next generation

of quantum electronic circuits, including future measure-
ments of FCS.
Motivated by these experimental advances, we develop

in this Letter a dynamical scheme for measuring the FCS in
mesoscopic conductors. The detector consists of an elec-
tronic Mach-Zehnder interferometer driven by periodic
voltage pulses [62,63]. One arm of the interferometer is
capacitively coupled to a nearby conductor that causes a
phase shift which is proportional to the number of trans-
ferred charges; see Fig. 1. As we will see, the FCS of the
conductor can be inferred from current measurements at the
outputs of the interferometer. Setups of this type, with static
voltages, have been considered in both experiment [57] and

FIG. 1. Interferometric measurements of FCS. Single electrons
are injected into a Mach-Zehnder interferometer enclosing the
magnetic flux ϕ. Separate voltage signals are applied to the
interferometer VðtÞ and a nearby conductor VcðtÞ ¼ Vðt − τÞ
with a time delay τ. The average current hIimeasured at an output
is sensitive to a phase shift caused by the capacitive coupling to
the conductor in the interaction region of length a. The phase shift
is proportional to the number of transferred electrons in the
conductor. By varying the magnetic flux and the time delay τ, the
FCS of the conductor can be obtained from average current
measurements only.
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theory [64,65]. However, so far the conductor has been
operated as a which-path detector for the interferometer
[58,66,67]. Here, by contrast, we exchange the roles and
instead use the interferometer as a detector of the FCS in
the conductor. Specifically, using a microscopic theory we
derive an effective coupling for the interaction between the
interferometer and the conductor which functions as the
counting field of the FCS. The coupling can be controlled
by varying the delay between separate voltage signals
applied to the interferometer and the conductor.
Importantly, the FCS is independent of the width of the
applied pulses, and our proposal thus encompasses mea-
surements of the FCS with very wide pulses corresponding
to a constant voltage.
Mach-Zehnder interferometer.—The interferometer is

implemented with edge states of a two-dimensional elec-
tron gas in the integer quantum Hall regime [55–61].
Incoming electrons are coherently split at the first QPC
and recombined at the second. Single electrons are emitted
into the interferometer by applying periodic voltage pulses
to one of the inputs [62,63,68–70]. The pulses are suffi-
ciently separated so that only one electron at a time
traverses the interferometer [71]. The electronic state inside
the interferometer is a coherent superposition of the
electron being in the upper (jui) or lower (jli) arm [72]:

jΨi ¼ t1jli þ eiϕr1jui: ð1Þ
Here, t1 and r1 are the transmission and reflection ampli-
tudes, respectively, of the first QPC and ϕ ¼ 2πΦ=Φ0 is the
ratio of the magnetic flux Φ enclosed by the arms over the
flux quantum Φ0. For electrons injected into the interfer-
ometer with period T , the current in the upper output reads

hÎi ¼ ðe=T Þjt1t2 þ r1r2eiϕj2; ð2Þ
where t2 and r2 are the transmission and reflection ampli-
tudes, respectively, of the second QPC. Equation (1)
describes a pure state. More generally, for instance, due
to a finite temperature or external noise causing fluctuations
of ϕ, the electron must be described by a density matrix ρ̂.
Importantly, a measurement of the average current yields an
ensemble average over the phase ϕ [73].
Basic principle.—The Mach-Zehnder interferometer is

coupled to a nearby conductor whose current fluctuations
we wish to measure. The electrical fluctuations are
described by the moment generating function (MGF)

χðλÞ ¼
X
n

PðnÞeinλ ¼ heinλi: ð3Þ

The average is defined with respect to the probability PðnÞ
of n charges being transmitted through the conductor, and λ
is the counting field. The conductor is driven by periodic
pulses such that the MGF after many periods (N ≫ 1)
factorizes as χðλÞ ¼ ½χextðλÞ�N , where χextðλÞ characterizes
the extensive FCS per period [74]. We focus on the

measurement of χextðλÞ and omit the subscript “ext” in
the following.
The conductor is coupled to the upper arm of the

interferometer. Such a setup has been experimentally
realized [57–59], albeit with statically biased contacts.
By contrast, here we drive both the conductor and the
interferometer with periodic voltage pulses. The frequency
of the two pulse sequences is the same, but we allow for a
time delay τ between them. With this setup, an electron in
the upper arm picks up the additional phase δϕ ¼ nλ due to
n electrons passing by in the conductor per period. This
connection is derived in a detailed analysis below, where
we use a microscopic theory for the interaction between the
interferometer and the conductor to show that the effective
dimensionless coupling λ indeed can be identified with the
counting field. At zero temperature, the density matrix of
the interferometer reads

ρ̂ ¼
� jt1j2 t1r�1e

iϕχðλÞ
t�1r1e

−iϕ½χðλÞ�� jr1j2
�
; ð4Þ

having used heiδϕi ¼ heinλi ¼ χðλÞ. The off-diagonal
element of ρ̂ contains the MGF of the conductor.
Additional dephasing due to other noise sources can be
included in the off-diagonal elements as we discuss below.
Equation (4) generalizes (1) to nonpure states. It corre-
sponds to an average over many periods and, as such, does
not have any particular periodicity or time dependence.
The MGF can now be extracted from the current in the

upper output. The current hÎi ¼ tr½ρ̂ Î� reads

hÎi ¼ ðe=T Þ½T1T2 þ R1R2 þ 2Reft�1t�2r1r2eiϕχðλÞg�; ð5Þ

where Tj ¼ jtjj2 and Rj ¼ jrjj2 are the transmissions and
reflections, respectively, of the two QPCs (j ¼ 1, 2). At
half transmission, we get hÎi¼ ðe=T Þ½1þRefeiϕχðλÞg�=2.
Moreover, by changing the magnetic flux, we find
hÎiϕ¼0 ¼ ðe=T Þ½1þ RefχðλÞg�=2 and hÎ1iϕ¼3π=2 ¼
ðe=T Þ½1þ ImfχðλÞg�=2. These expressions lead us to
the MGF

χðλÞ ¼ 2T
e

��
hÎiϕ¼0 −

e
2T

�
þ i

�
hÎiϕ¼3π=2 −

e
2T

��
: ð6Þ

Remarkably, the MGF can be obtained from average
current measurements. This is the first central result of
our work. As we go on to show, the counting field λ can be
controlled by varying the time delay τ between the pulse
sequences. We can then perform a full tomography of χðλÞ
and thereby evaluate the FCS of the charge transfer.
Detailed analysis.—We now embark on a detailed

analysis of the coupling between the interferometer and
the conductor. The interaction between the two edge states
is described by the Hamiltonian [75]
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Ĥλ0 ¼ λ0
ℏvF
2a

N̂CN̂I: ð7Þ

Here, λ0 is a dimensionless coupling, vF is the Fermi
velocity, and a is a characteristic length scale over
which electrons in the two edge states interact.
The operators N̂C¼

R
dxκCðxÞ∶Ψ̂†

CðxÞΨ̂CðxÞ∶ and N̂I ¼R
dyκIðyÞ∶Ψ̂†

I ðyÞΨ̂IðyÞ∶ count the number of excess elec-
trons in the interacting regions of the conductor and the
interferometer, weighted by the coordinate kernels κCðxÞ
and κIðyÞ. Normal ordering with respect to the Fermi sea is
denoted as ∶…∶, and Ψ̂CðxÞ and Ψ̂IðyÞ are field operators
for electrons in the conductor and in the interferometer,
respectively.
The MGF in the off-diagonal element of the density

matrix in Eq. (4) can now be expressed as [1,13]

χðλ0Þ¼
D
tr
�
~T
n
e
−i
R

t

t0
dt0Ĥλ0

ðt0Þo
T
n
e
i
R

t

t0
dt0Ĥ−λ0 ðt0Þ

o
ρ̂
�E

; ð8Þ

having set ℏ ¼ 1 and Ĥλ0ðtÞ is in the Heisenberg repre-
sentation governed by the full Hamiltonian Ĥ ¼ Ĥ0 þ Ĥλ0

with Ĥ0 describing the uncoupled systems. The initial
density matrix of the electron in the interferometer is
denoted as ρ̂ ¼ ρ̂ðt0Þ, and the trace is taken over the spatial
coordinates. The average is defined with respect to the
electrons in the conductor. Time and antitime ordering are
denoted as T and ~T, respectively.
The considerations above are general. To make further

progress, we take for the kernels the specific form [75]

κCðxÞ ¼ κIðxÞ ¼ e−jxj=a: ð9Þ
If a is much smaller than the length of the interferometer,
the current measured at the output is determined by the

limit t → ∞ in Eq. (8). With a linear dispersion relation for
electrons close to the Fermi level and a pure initial state of
the electron in the interferometer, we find [76]

χðλ0Þ ¼
�Z

dyeiλ0
R

dx∶Ψ̂†
CðxÞΨ̂CðxÞ∶Φðx;yÞjfðyÞj2

	
; ð10Þ

where fðyÞ is the wave function of the electron injected into
the interferometer and the function

Φðx; yÞ ¼ e−ðjx−yj=aÞ
�
1þ jx − yj

a

�
ð11Þ

follows from the definition of the coordinate kernels.
We first consider the injection of electron wave packets

with small widths compared to a, so that we can approxi-
mate jfðyÞj2≃δðyÞ and ∶Ψ†

CðxÞΨCðxÞ∶≃ δðxþ vFτÞn̂ðxÞ,
where n̂ðxÞ is the number operator for excess electrons in
the conductor at position x and τ is the time delay between
the injection of electrons into the conductor and the
interferometer. Equation (10) then yields

χðλÞ ¼ hein̂λðτÞi; ð12Þ
with

λðτÞ ¼ λ0e−vFjτj=a
�
1þ vFjτj

a

�
: ð13Þ

Equation (13) is the second important result of our work. It
shows that the effective counting field λ can be controlled
by changing the time delay τ. Negative values of the
counting field can be realized by injecting holelike exci-
tations into the interferometer [77]. The specific functional
form of Eq. (13) is determined by the coordinate kernels in
Eq. (9), and, in reality, the dependence on τ may be

FIG. 2. Interferometric measurement of the full-counting statistics in a QPC. (a) Cumulants of the current as functions of the QPC
transmission T. We show results for different pulse widths Γ in terms of the length a of the interaction region. The exact results for a
binomial process are hhI2ii ¼ Tð1 − TÞ, hhI3ii ¼ Tð1 − TÞð1 − 2TÞ, and hhI4ii ¼ Tð1 − TÞð1 − 6T þ 6T2Þ, having set e ¼ 1 and
T ¼ 1 here and in the figure. (b) Full distribution of the current I ¼ en=N with T ¼ 0.4 and N ¼ 40. For a large number of periods
N ≫ 1, the distribution takes on the large-deviation form ln½PðIÞ�=N ¼ GðIÞ with the rate function GðIÞ being independent of N. For a
binomial process, we find ln½PðIÞ�=N ¼ ln½ð1 − TÞ=ð1 − IÞ� þ Ifln½T=ð1 − TÞ� − ln½I=ð1 − IÞ�g þOðN−1Þ.
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different. Experimentally, one may then obtain λðτÞ using a
conductor with a known FCS, e.g., a fully open QPC, for
calibration.
In general, the wave functions have a finite width.

Evaluating Eq. (10) with the same wave functions fðxÞ
in the conductor and the interferometer, we find

χmeasðλÞ ¼
Z

dyjfðyÞj2χ½~λðy; λÞ� ð14Þ

with ~λðy;λÞ¼ λ
R
dxΦðx;yÞjfðxÞj2 and λ given by Eq. (13).

Thus, for finite widths a measurement yields an average of
MGFs for different effective couplings. However, if
the pulses applied to the interferometer are sharper than
the length of the interaction regions, we can incorporate the
finite width of the electrons in the conductor into a
rescaling of the effective counting field λ, which again
can be obtained by proper calibration.
Driven quantum point contact.—To illustrate our meas-

urement scheme, we consider a QPC driven by Lorentzian
voltage pulses of unit charge as realized in recent experi-
ments [51,52]. The QPC transmits electrons with proba-
bility T, and the exact MGF reads χðλÞ ¼ 1þ Tðeiλ − 1Þ.
The measured MGF is given by Eq. (14) with a Lorentzian
wave packet jfðyÞj2 ¼ 2Γ=ðy2 þ Γ2Þ of width Γ. We now
obtain the cumulants of the current as

hhImii ¼ em

T
∂m
iλ lnfχmeasðλÞgjλ→0; ð15Þ

where λ is the rescaled counting field. In Fig. 2(a), we show
results for the cumulants as functions of the QPC trans-
mission. For narrow wave packets, we find good agreement
with analytic results for a binomial process.
Next, we turn to the full distribution of transferred charge

after N periods, given by the inversion formula

PðnÞ ¼ 1

2π

Z
π

−π
dλeN½lnfχmeasðλÞg−iλn=N�: ð16Þ

For a large number of periodsN ≫ 1, the distribution of the
current I ¼ en=ðNT Þ takes on the large-deviation form
PðIÞ≃ eGðIÞN following from a saddle-point approximation
of the integral in Eq. (16). Here, the rate function GðIÞ
describes the exponentially rare current fluctuations,
beyond what is captured by the central-limit theorem. In
Fig. 2(b), we again find good agreement with the analytic
result for a binomial distribution.
Dephasing.—Our scheme is based on the reduced

visibility in the Mach-Zehnder interferometer due to the
dephasing induced by electrons in the conductor. In
realistic systems, however, the visibility will already be
reduced due to other dephasing mechanisms such as finite
temperatures, the coupling to bulk electrons, copropagating
edge states, or electrons in the Fermi sea [78]. These effects
are encoded in an additional fluctuating phase δθ
[55,79,80]. It is reasonable to assume that the dephasing

due to bulk phonons, for instance, is statistically indepen-
dent from the dephasing due to the electrons in the
conductor. For a Gaussian distribution of width σ, the
measured MGF then simply gets rescaled as χmeasðλÞ →
e−σ

2

χmeasðλÞ, and the width can be determined from a
visibility measurement without electrons injected into the
conductor. For non-Gaussian fluctuations [61,64], the total
measured MGF takes the form χmeasðλÞ → χmeasðλÞχenvðλ0Þ
for some fixed coupling λ0 to the environment, such that the
environmental contribution χenvðλ0Þ again can be factored
out.
Entanglement entropy.—Finally, as an application of our

scheme, we consider measuring the entanglement entropy
generated by partitioning electrons on a QPC. Recently, it
has been realized that the entanglement entropy between
two electronic reservoirs connected by a QPC is closely
linked to the FCS [30–34]. Specifically, the entanglement
entropy generated per period can be approximated from the
first four current cumulants as [31,32]

S ≃ α2 hhI2ii þ α4 hhI4ii; ð17Þ
where the coefficients αm¼2

P
4
k¼m−1S1ðk;m−1Þ=ðemk!kÞ

are given by the unsigned Stirling numbers of the first kind
S1ðk;mÞ. Figure 3 shows that the entanglement entropy
obtained from the cumulants in Fig. 2(a) is in good
agreement with the exact result. This demonstrates that
the entanglement entropy in a fermionic quantum many-
body system may be within experimental reach.
Conclusions.—Electronic Mach-Zehnder interferome-

ters can function as detectors of current fluctuations in
mesoscopic conductors. Equation (6) expresses the full-
counting statistics exclusively in terms of average currents
measured at the outputs of the interferometer. Equation (13)
shows that the counting field can be controlled by varying
the time delay between separate voltage signals. These
findings make it possible to measure the current cumulants
as well as the full distribution of current fluctuations as

FIG. 3. The entanglement entropy generated per period ob-
tained from Eq. (17). The exact result for the entanglement
entropy reads S ¼ ðT − 1Þ lnð1 − TÞ − T lnT. The maximum
value S ¼ ln 2 is obtained for T ¼ 1=2.
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illustrated in Fig. 2. Our scheme is robust against moderate
dephasing and finite temperature effects. As an application
we have shown that our scheme enables measurements of
the entanglement entropy in fermionic many-body systems.
Extensions of our work may facilitate the detection of
short-time observables such as the electronic waiting time
distribution [81–83] or include superconducting circuit
elements [13].

We thank D. Golubev, P. P. Hofer, G. B. Lesovik, and
C. Padurariu for useful comments. We thank P. P. Hofer for
helping us produce Fig. 1. C. F. is affiliated with Centre for
Quantum Engineering at Aalto University. D. D. acknowl-
edges the hospitality of Aalto University. The work was
supported by Swiss National Science Foundation and
Academy of Finland.

[1] L. S. Levitov, H.-W. Lee, and G. B. Lesovik, Electron
counting statistics and coherent states of electric current,
J. Math. Phys. (N.Y.) 37, 4845 (1996).

[2] Ya. M. Blanter and M. Büttiker, Shot noise in mesoscopic
conductors, Phys. Rep. 336, 1 (2000).

[3] Quantum Noise in Mesoscopic Physics, edited by Yu. V.
Nazarov (Kluwer, Dordrecht, 2003).

[4] M. Vanević, Yu. V. Nazarov, and W. Belzig, Elementary
Events of Electron Transfer in a Voltage-Driven Quantum
Point Contact, Phys. Rev. Lett. 99, 076601 (2007).

[5] M. Vanević, Yu. V. Nazarov, and W. Belzig, Elementary
charge-transfer processes in mesoscopic conductors, Phys.
Rev. B 78, 245308 (2008).

[6] F. Hassler, M. V. Suslov, G. M. Graf, M. V. Lebedev, G. B.
Lesovik, and G. Blatter, Wave-packet formalism of full
counting statistics, Phys. Rev. B 78, 165330 (2008).

[7] A. G. Abanov and D. A. Ivanov, Allowed Charge Transfers
between Coherent Conductors Driven by a Time-Dependent
Scatterer, Phys. Rev. Lett. 100, 086602 (2008).

[8] A. G. Abanov and D. A. Ivanov, Factorization of quantum
charge transport for noninteracting fermions, Phys. Rev. B
79, 205315 (2009).

[9] C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M.
Kindermann, Charge Detection Enables Free-Electron
Quantum Computation, Phys. Rev. Lett. 93, 020501 (2004).

[10] A. Di Lorenzo and Yu. V. Nazarov, Full Counting Statistics
with Spin-Sensitive Detectors Reveals Spin Singlets, Phys.
Rev. Lett. 94, 210601 (2005).

[11] D. Kambly, C. Flindt, and M. Büttiker, Factorial cumulants
reveal interactions in counting statistics, Phys. Rev. B 83,
075432 (2011).

[12] P. Stegmann, B. Sothmann, A. Hucht, and J. König,
Detection of interactions via generalized factorial cumulants
in systems in and out of equilibrium, Phys. Rev. B 92,
155413 (2015).

[13] W. Belzig and Yu. V. Nazarov, Full Counting Statistics of
Electron Transfer between Superconductors, Phys. Rev.
Lett. 87, 197006 (2001).

[14] A. Bednorz and W. Belzig, Quasiprobabilistic Interpretation
of Weak Measurements in Mesoscopic Junctions, Phys.
Rev. Lett. 105, 106803 (2010).

[15] A. A. Clerk, Full counting statistics of energy fluctuations in
a driven quantum resonator, Phys. Rev. A 84, 043824
(2011).

[16] P. P. Hofer and A. A. Clerk, Negative Full Counting
Statistics Arise from Interference Effects, Phys. Rev. Lett.
116, 013603 (2016).

[17] H. Soller and A. Komnik, Charge transfer statistics of
transport through Majorana bound states, Physica
(Amsterdam) 63E, 99 (2014).

[18] Z. Li, C. Lam, and J. Q. You, Probing Majorana bound
states via counting statistics of a single electron transistor,
Sci. Rep. 5, 11416 (2015).

[19] N. V. Gnezdilov, B. van Heck, M. Diez, Jimmy A. Hutasoit,
and C.W. J. Beenakker, Topologically protected charge
transfer along the edge of a chiral p-wave superconductor,
Phys. Rev. B 92, 121406 (2015).

[20] D. E. Liu, A. Levchenko, and R. M. Lutchyn, Majorana zero
modes choose Euler numbers as revealed by full counting
statistics, Phys. Rev. B 92, 205422 (2015).

[21] G. Strübi, W. Belzig, T. L. Schmidt, and C. Bruder, Full
counting statistics of Majorana interferometers, Physica
(Amsterdam) 74E, 489 (2015).

[22] J. Tobiska and Yu. V. Nazarov, Inelastic interaction
corrections and universal relations for full counting
statistics in a quantum contact, Phys. Rev. B 72, 235328
(2005).

[23] H. Förster and M. Büttiker, Fluctuation Relations without
Microreversibility in Nonlinear Transport, Phys. Rev. Lett.
101, 136805 (2008).

[24] M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium
fluctuations, fluctuation theorems, and counting statistics in
quantum systems, Rev. Mod. Phys. 81, 1665 (2009).

[25] Y. Utsumi and K. Saito, Fluctuation theorem in a quantum-
dot Aharonov-Bohm interferometer, Phys. Rev. B 79,
235311 (2009).

[26] K. E. Nagaev, O. S. Ayvazyan, N. Yu. Sergeeva, and M.
Büttiker, Magnetic-Field-Induced Non-Gaussian Fluctua-
tions in Macroscopic Equilibrium Systems, Phys. Rev. Lett.
105, 146802 (2010).

[27] Y. Utsumi, D. S. Golubev, M. Marthaler, K. Saito, T.
Fujisawa, and G. Schön, Bidirectional single-electron
counting and the fluctuation theorem, Phys. Rev. B 81,
125331 (2010).

[28] B. Küng, C. Rössler, M. Beck, M. Marthaler, D. S. Golubev,
Y. Utsumi, T. Ihn, and K. Ensslin, Irreversibility on the
Level of Single-Electron Tunneling, Phys. Rev. X 2, 011001
(2012).

[29] O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. V. Averin,
and J. P. Pekola, Test of the Jarzynski and Crooks Fluc-
tuation Relations in an Electronic System, Phys. Rev. Lett.
109, 180601 (2012).

[30] I. Klich and L. S. Levitov, Quantum Noise as an Entangle-
ment Meter, Phys. Rev. Lett. 102, 100502 (2009).

[31] H. F. Song, C. Flindt, S. Rachel, I. Klich, and K. Le Hur,
Entanglement entropy from charge statistics: Exact relations
for noninteracting many-body systems, Phys. Rev. B 83,
161408 (2011).

[32] H. F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie,
and K. Le Hur, Bipartite fluctuations as a probe of many-
body entanglement, Phys. Rev. B 85, 035409 (2012).

PRL 117, 146801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 SEPTEMBER 2016

146801-5

http://dx.doi.org/10.1063/1.531672
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
http://dx.doi.org/10.1103/PhysRevLett.99.076601
http://dx.doi.org/10.1103/PhysRevB.78.245308
http://dx.doi.org/10.1103/PhysRevB.78.245308
http://dx.doi.org/10.1103/PhysRevB.78.165330
http://dx.doi.org/10.1103/PhysRevLett.100.086602
http://dx.doi.org/10.1103/PhysRevB.79.205315
http://dx.doi.org/10.1103/PhysRevB.79.205315
http://dx.doi.org/10.1103/PhysRevLett.93.020501
http://dx.doi.org/10.1103/PhysRevLett.94.210601
http://dx.doi.org/10.1103/PhysRevLett.94.210601
http://dx.doi.org/10.1103/PhysRevB.83.075432
http://dx.doi.org/10.1103/PhysRevB.83.075432
http://dx.doi.org/10.1103/PhysRevB.92.155413
http://dx.doi.org/10.1103/PhysRevB.92.155413
http://dx.doi.org/10.1103/PhysRevLett.87.197006
http://dx.doi.org/10.1103/PhysRevLett.87.197006
http://dx.doi.org/10.1103/PhysRevLett.105.106803
http://dx.doi.org/10.1103/PhysRevLett.105.106803
http://dx.doi.org/10.1103/PhysRevA.84.043824
http://dx.doi.org/10.1103/PhysRevA.84.043824
http://dx.doi.org/10.1103/PhysRevLett.116.013603
http://dx.doi.org/10.1103/PhysRevLett.116.013603
http://dx.doi.org/10.1016/j.physe.2014.05.020
http://dx.doi.org/10.1016/j.physe.2014.05.020
http://dx.doi.org/10.1038/srep11416
http://dx.doi.org/10.1103/PhysRevB.92.121406
http://dx.doi.org/10.1103/PhysRevB.92.205422
http://dx.doi.org/10.1016/j.physe.2015.08.005
http://dx.doi.org/10.1016/j.physe.2015.08.005
http://dx.doi.org/10.1103/PhysRevB.72.235328
http://dx.doi.org/10.1103/PhysRevB.72.235328
http://dx.doi.org/10.1103/PhysRevLett.101.136805
http://dx.doi.org/10.1103/PhysRevLett.101.136805
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/PhysRevB.79.235311
http://dx.doi.org/10.1103/PhysRevB.79.235311
http://dx.doi.org/10.1103/PhysRevLett.105.146802
http://dx.doi.org/10.1103/PhysRevLett.105.146802
http://dx.doi.org/10.1103/PhysRevB.81.125331
http://dx.doi.org/10.1103/PhysRevB.81.125331
http://dx.doi.org/10.1103/PhysRevX.2.011001
http://dx.doi.org/10.1103/PhysRevX.2.011001
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1103/PhysRevLett.109.180601
http://dx.doi.org/10.1103/PhysRevLett.102.100502
http://dx.doi.org/10.1103/PhysRevB.83.161408
http://dx.doi.org/10.1103/PhysRevB.83.161408
http://dx.doi.org/10.1103/PhysRevB.85.035409


[33] A. Petrescu, H. F. Song, S. Rachel, Z. Ristivojevic, C.
Flindt, N. Laflorencie, I. Klich, N. Regnault, and K. Le Hur,
Fluctuations and entanglement spectrum in quantum hall
states, J. Stat. Mech. (2014) P10005.

[34] K. H. Thomas and C. Flindt, Entanglement entropy in
dynamic quantum-coherent conductors, Phys. Rev. B 91,
125406 (2015).

[35] T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama,
Bidirectional counting of single electrons, Science 312,
1634 (2006).

[36] S. Gustavsson, R. Leturcq, B. Simovič, R. Schleser, T. Ihn,
P. Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard,
Counting Statistics of Single Electron Transport in a
Quantum Dot, Phys. Rev. Lett. 96, 076605 (2006).

[37] C. Flindt, C. Fricke, F. Hohls, T. Novotný, K. Netočný, T.
Brandes, and R. J. Haug, Universal oscillations in counting
statistics, Proc. Natl. Acad. Sci. U.S.A. 106, 10116 (2009).

[38] S. Gustavsson, R. Leturcq, M. Studer, I. Shorubalko, T. Ihn,
K. Ensslin, D. C. Driscoll, and A. C. Gossard, Electron
counting in quantum dots, Surf. Sci. Rep. 64, 191 (2009).

[39] N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J.
Haug, Measurement of finite-frequency current statistics in
a single-electron transistor, Nat. Commun. 3, 612 (2012).

[40] V. F. Maisi, D. Kambly, C. Flindt, and J. P. Pekola, Full
Counting Statistics of Andreev Tunneling, Phys. Rev. Lett.
112, 036801 (2014).

[41] B. Reulet, J. Senzier, and D. E. Prober, Environmental
Effects in the Third Moment of Voltage Fluctuations in a
Tunnel Junction, Phys. Rev. Lett. 91, 196601 (2003).

[42] Yu. Bomze, G. Gershon, D. Shovkun, L. S. Levitov, and M.
Reznikov, Measurement of Counting Statistics of Electron
Transport in a Tunnel Junction, Phys. Rev. Lett. 95, 176601
(2005).

[43] A. V. Timofeev, M. Meschke, J. T. Peltonen, T. T. Heikkila,
and J. P. Pekola, Wideband Detection of the Third Moment
of Shot Noise by a Hysteretic Josephson Junction, Phys.
Rev. Lett. 98, 207001 (2007).

[44] G. Gershon, Yu. Bomze, E. V. Sukhorukov, and M.
Reznikov, Detection of Non-Gaussian Fluctuations in a
Quantum Point Contact, Phys. Rev. Lett. 101, 016803
(2008).

[45] J. Gabelli and B. Reulet, Full counting statistics of ava-
lanche transport: An experiment, Phys. Rev. B 80, 161203
(2009).

[46] G. B. Lesovik, F. Hassler, and G. Blatter, Using Qubits to
Measure Fidelity in Mesoscopic Systems, Phys. Rev. Lett.
96, 106801 (2006).

[47] A. V. Lebedev, G. B. Lesovik, and G. Blatter, Optimal
noninvasive measurement of full counting statistics by a
single qubit, Phys. Rev. B 93, 115140 (2016).

[48] E. Bocquillon, V. Freulon, F. D. Parmentier, J.-M. Berroir,
B. Plaçais, C. Wahl, J. Rech, T. Jonckheere, T. Martin, C.
Grenier, D. Ferraro, P. Degiovanni, and G. Fève, Electron
quantum optics in ballistic chiral conductors, Ann. Phys.
(Berlin) 526, 1 (2014).

[49] J. Gabelli, G. Fève, J.-M. Berroir, B. Plaçais, A. Cavanna, B.
Etienne, Y. Jin, and D. C. Glattli, Violation of Kirchhoff’s
laws for a coherent RC circuit, Science 313, 499 (2006).

[50] G. Fève, A. Mahe, J.-M. Berroir, T. Kontos, B. Plaçais,
D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, An

on-demand coherent single-electron source, Science 316,
1169 (2007).

[51] J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna, Y. Jin,
W. Wegscheider, P. Roulleau, and D. C. Glattli, Minimal-
excitation states for electron quantum optics using levitons,
Nature (London) 502, 659 (2013).

[52] T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin, and
D. C. Glattli, Quantum tomography of an electron, Nature
(London) 514, 603 (2014).

[53] M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin,
M. Holland, and C. Schönenberger, The Fermionic Hanbury
Brown and Twiss experiment, Science 284, 296 (1999).

[54] W. D. Oliver, J. Kim, R. C. Liu, and Y. Yamamoto, Hanbury
Brown and Twiss-type experiment with electrons, Science
284, 299 (1999).

[55] Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and
H. Shtrikman, An electronic Mach-Zehnder interferometer,
Nature (London) 422, 415 (2003).

[56] I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and
V. Umansky, Interference between two indistinguishable
electrons from independent sources, Nature (London) 448,
333 (2007).

[57] I. Neder, F. Marquardt, M. Heiblum, D. Mahalu, and
V. Umansky, Controlled dephasing of electrons by non-
Gaussian shot noise, Nat. Phys. 3, 534 (2007).

[58] I. Neder, M. Heiblum, D. Mahalu, and V. Umansky,
Entanglement, Dephasing, and Phase Recovery via Cross-
Correlation Measurements of Electrons, Phys. Rev. Lett. 98,
036803 (2007).

[59] P. Roulleau, F. Portier, D. C. Glattli, P. Roche, A. Cavanna,
G. Faini, U. Gennser, and D. Mailly, Direct Measurement of
the Coherence Length of Edge States in the Integer
Quantum Hall Regime, Phys. Rev. Lett. 100, 126802
(2008).

[60] L. V. Litvin, A. Helzel, H.-P. Tranitz, W. Wegscheider, and
C. Strunk, Phase of the transmission amplitude for a
quantum dot embedded in the arm of an electronic
Mach-Zehnder interferometer, Phys. Rev. B 81, 205425
(2010).

[61] A. Helzel, L. V. Litvin, I. P. Levkivskyi, E. V. Sukhorukov,
W. Wegscheider, and C. Strunk, Counting statistics and
dephasing transition in an electronic Mach-Zehnder inter-
ferometer, Phys. Rev. B 91, 245419 (2015).

[62] P. P. Hofer and C. Flindt, Mach-Zehnder interferometry with
periodic voltage pulses, Phys. Rev. B 90, 235416 (2014).

[63] B. Gaury and X. Waintal, Dynamical control of interference
using voltage pulses in the quantum regime, Nat. Commun.
5, 3844 (2014).

[64] I. Neder and F. Marquardt, Coherence oscillations in
dephasing by non-Gaussian shot noise, New J. Phys. 9,
112 (2007).

[65] I. P. Levkivskyi and E. V. Sukhorukov, Noise-Induced Phase
Transition in the Electronic Mach-Zehnder Interferometer,
Phys. Rev. Lett. 103, 036801 (2009).

[66] J. Dressel, Y. Choi, and A. N. Jordan, Measuring which-path
information with coupled electronic Mach-Zehnder inter-
ferometers, Phys. Rev. B 85, 045320 (2012).

[67] E. Weisz, H. K. Choi, I. Sivan, M. Heiblum, Y. Gefen, D.
Mahalu, and V. Umansky, An electronic quantum eraser,
Science 344, 1363 (2014).

PRL 117, 146801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 SEPTEMBER 2016

146801-6

http://dx.doi.org/10.1088/1742-5468/2014/10/P10005
http://dx.doi.org/10.1103/PhysRevB.91.125406
http://dx.doi.org/10.1103/PhysRevB.91.125406
http://dx.doi.org/10.1126/science.1126788
http://dx.doi.org/10.1126/science.1126788
http://dx.doi.org/10.1103/PhysRevLett.96.076605
http://dx.doi.org/10.1073/pnas.0901002106
http://dx.doi.org/10.1016/j.surfrep.2009.02.001
http://dx.doi.org/10.1038/ncomms1620
http://dx.doi.org/10.1103/PhysRevLett.112.036801
http://dx.doi.org/10.1103/PhysRevLett.112.036801
http://dx.doi.org/10.1103/PhysRevLett.91.196601
http://dx.doi.org/10.1103/PhysRevLett.95.176601
http://dx.doi.org/10.1103/PhysRevLett.95.176601
http://dx.doi.org/10.1103/PhysRevLett.98.207001
http://dx.doi.org/10.1103/PhysRevLett.98.207001
http://dx.doi.org/10.1103/PhysRevLett.101.016803
http://dx.doi.org/10.1103/PhysRevLett.101.016803
http://dx.doi.org/10.1103/PhysRevB.80.161203
http://dx.doi.org/10.1103/PhysRevB.80.161203
http://dx.doi.org/10.1103/PhysRevLett.96.106801
http://dx.doi.org/10.1103/PhysRevLett.96.106801
http://dx.doi.org/10.1103/PhysRevB.93.115140
http://dx.doi.org/10.1002/andp.201300181
http://dx.doi.org/10.1002/andp.201300181
http://dx.doi.org/10.1126/science.1126940
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1038/nature12713
http://dx.doi.org/10.1038/nature13821
http://dx.doi.org/10.1038/nature13821
http://dx.doi.org/10.1126/science.284.5412.296
http://dx.doi.org/10.1126/science.284.5412.299
http://dx.doi.org/10.1126/science.284.5412.299
http://dx.doi.org/10.1038/nature01503
http://dx.doi.org/10.1038/nature05955
http://dx.doi.org/10.1038/nature05955
http://dx.doi.org/10.1038/nphys627
http://dx.doi.org/10.1103/PhysRevLett.98.036803
http://dx.doi.org/10.1103/PhysRevLett.98.036803
http://dx.doi.org/10.1103/PhysRevLett.100.126802
http://dx.doi.org/10.1103/PhysRevLett.100.126802
http://dx.doi.org/10.1103/PhysRevB.81.205425
http://dx.doi.org/10.1103/PhysRevB.81.205425
http://dx.doi.org/10.1103/PhysRevB.91.245419
http://dx.doi.org/10.1103/PhysRevB.90.235416
http://dx.doi.org/10.1038/ncomms4844
http://dx.doi.org/10.1038/ncomms4844
http://dx.doi.org/10.1088/1367-2630/9/5/112
http://dx.doi.org/10.1088/1367-2630/9/5/112
http://dx.doi.org/10.1103/PhysRevLett.103.036801
http://dx.doi.org/10.1103/PhysRevB.85.045320
http://dx.doi.org/10.1126/science.1248459


[68] A. V. Lebedev, G. B. Lesovik, and G. Blatter, Generating
spin-entangled electron pairs in normal conductors using
voltage pulses, Phys. Rev. B 72, 245314 (2005).

[69] F. Hassler, G. B. Lesovik, and G. Blatter, Effects of
Exchange Symmetry on Full Counting Statistics, Phys.
Rev. Lett. 99, 076804 (2007).

[70] J. Keeling, I. Klich, and L. S. Levitov, Minimal Excitation
States of Electrons in One-Dimensional Wires, Phys. Rev.
Lett. 97, 116403 (2006).

[71] In an alternative implementation, one may consider the
injection of charges from a mesoscopic capacitor.

[72] This state resembles the spin in the proposal of Ref. [1].
[73] P. Samuelsson and M. Büttiker, Quantum state tomography

with quantum shot noise, Phys. Rev. B 73, 041305 (2006).
[74] D. A. Ivanov, H. W. Lee, and L. S. Levitov, Coherent

states of alternating current, Phys. Rev. B 56, 6839 (1997).
[75] A. A. Vyshnevyy, A. V. Lebedev, G. B. Lesovik, and G.

Blatter, Two-particle entanglement in capacitively coupled
Mach-Zehnder interferometers, Phys. Rev. B 87, 165302
(2013).

[76] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.146801 for details
of this calculation.

[77] One can, in principle, use any range of counting fields of
length 2π, for instance, ½0; 2π� or ½−π; π�. However, the
maximal value of the counting field is given by the
dimensionless coupling λ0 in Eq. (13). Thus, if this coupling
is smaller than 2π, one needs to use the interval ½−π; π�.

[78] I. P. Levkivskyi and E. V. Sukhorukov, Dephasing in the
electronic Mach-Zehnder interferometer at filling factor
ν ¼ 2, Phys. Rev. B 78, 045322 (2008).

[79] P. Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini,
U. Gennser, and D. Mailly, Tuning Decoherence with a
Voltage Probe, Phys. Rev. Lett. 102, 236802 (2009).

[80] E. Bieri, M. Weiss, O. Göktas, M. Hauser, C.
Schönenberger, and S. Oberholzer, Finite-bias visibility
dependence in an electronic Mach-Zehnder interferometer,
Phys. Rev. B 79, 245324 (2009).

[81] M. Albert, G. Haack, C. Flindt, and M. Büttiker, Electron
Waiting Times in Mesoscopic Conductors, Phys. Rev. Lett.
108, 186806 (2012).

[82] D. Dasenbrook, C. Flindt, and M. Büttiker, Floquet Theory
of Electron Waiting Times in Quantum-Coherent Conduc-
tors, Phys. Rev. Lett. 112, 146801 (2014).

[83] D. Dasenbrook and C. Flindt, Quantum theory of an electron
waiting time clock, Phys. Rev. B 93, 245409 (2016).

PRL 117, 146801 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 SEPTEMBER 2016

146801-7

http://dx.doi.org/10.1103/PhysRevB.72.245314
http://dx.doi.org/10.1103/PhysRevLett.99.076804
http://dx.doi.org/10.1103/PhysRevLett.99.076804
http://dx.doi.org/10.1103/PhysRevLett.97.116403
http://dx.doi.org/10.1103/PhysRevLett.97.116403
http://dx.doi.org/10.1103/PhysRevB.73.041305
http://dx.doi.org/10.1103/PhysRevB.56.6839
http://dx.doi.org/10.1103/PhysRevB.87.165302
http://dx.doi.org/10.1103/PhysRevB.87.165302
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.146801
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.146801
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.146801
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.146801
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.146801
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.146801
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.146801
http://dx.doi.org/10.1103/PhysRevB.78.045322
http://dx.doi.org/10.1103/PhysRevLett.102.236802
http://dx.doi.org/10.1103/PhysRevB.79.245324
http://dx.doi.org/10.1103/PhysRevLett.108.186806
http://dx.doi.org/10.1103/PhysRevLett.108.186806
http://dx.doi.org/10.1103/PhysRevLett.112.146801
http://dx.doi.org/10.1103/PhysRevB.93.245409

