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We theoretically propose that giant magnetochiral anisotropy is achieved in Weyl semimetals in
noncentrosymmetric crystals as a consequence of the chiral anomaly. The magnetochiral anisotropy is the
nonlinearity of the resistivity ρ that depends on the current I and the magnetic field B as ρ ¼ ρ0ð1þ γI · BÞ,
and can be applied to rectifier devices controlled by B. We derive the formula for the coefficient γ in
noncentrosymmetric Weyl semimetals. The obtained formula for γ shows that the magnetochiral anisotropy
is strongly enhanced when the chemical potential is tuned to Weyl points, and that noncentrosymmetric
Weyl semimetals such as TaAs can exhibit much larger magnetochiral anisotropy than that observed in
other materials so far.
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Relativistic electronic states in solids recently have
attracted intense interest [1]. They include two-dimensional
Dirac electrons in graphene [2], surface states of three-
dimensional topological insulators [3,4], band crossing in
three-dimensional ferromagnetic metals behaving as mag-
netic monopoles [5], and Weyl semimetals [6,7]. In
particular, the magnetotransport phenomena in Weyl semi-
metals have been actively studied in the context of chiral
anomaly [1,7]. Symmetries play a crucial role in the
appearance of relativistic electrons. Time-reversal sym-
metry T and the spatial inversion symmetry P are the most
fundamental, in which the energy dispersion of the Bloch
electrons satisfies the following constraints: εσðkÞ ¼
εσ̄ð−kÞ (σ̄ means the opposite spin to σ) in the presence
of T symmetry, while P symmetry imposes the relation
εσðkÞ ¼ εσð−kÞ. When both T and P symmetries are
present, the Kramers degeneracy occurs at every k point
and the band crossings are described by a 4 × 4
Hamiltonian. In this case, additional symmetry such as
point group symmetry is required to realize stable massless
Dirac electrons [8]. This Kramers degeneracy at each k
point is lifted by the broken T [5] or P combined with the
relativistic spin-orbit interaction. This results in the band
crossing described by the 2 × 2 Hamiltonian expanded as
HðkÞ ¼ P

3
α¼0 hαðkÞσα near the crossing point k0 (Weyl

point). Here, σ0 is the unit matrix while σ ¼ ðσ1; σ2; σ3Þ are
the Pauli matrices. Expanding hαðkÞ with respect to k − k0
up to the linear order, one obtains the Weyl fermion (WF).
After an appropriate coordinate transformation and neglect-
ing h0ðkÞ, which simply gives the shift of the energy, one
obtains

HðkÞ ¼ ηvFℏk · σ; ð1Þ

with the Fermi velocity vF, where η ¼ �1 determines the
chirality. Weyl semimetals are realized when the WFs are
the only low-energy excitations at the Fermi energy and the
transport properties are governed by WFs.
From the symmetry point of view, Weyl semimetals are

classified according to the symmetries, i.e., whether T or P
is broken. Magnetic materials break T symmetry and are
able to support the Weyl semimetals. One example is the
pyrochlore antiferromagnets where the pairs of Weyl
electrons appear along the four equivalent directions in
momentum space [1,9]. In this system,P symmetry is intact
for the single crystal, and the WFs with opposite chiralities
are located at k0 and −k0. The other class is the non-
centrosymmetric Weyl semimetals, which include a
recently discovered material realization of TaAs [10–12].
In this Letter, we focus on the latter noncentrosymmetric
Weyl semimetals.
The WF is characterized by the Berry curvature bðkÞ

in momentum space. The Berry curvature b for the lower-
energy state for Eq. (1) is given by

bðkÞ ¼ η
k

2jkj3 ; ð2Þ

which corresponds to that of monopole (antimonopole) for
η ¼ 1 (η ¼ −1). Namely, the integral of bðkÞ over the
surface enclosing the Weyl point is a topological index
which gives stability to the WFs. In this case, the only way
to destroy them is the pair annihilation of two WFs with
η ¼ 1 and η ¼ −1. Now, the time-reversal symmetry T
connects the electronic states at k and −k. As for the Berry
curvature bðkÞ, T imposes the relation bð−kÞ ¼ −bðkÞ.
This relation indicates that WF at k0 is always accompanied
by its partner WF at −k0 with the same chirality. This is
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because the surface integral of bðkÞ around k0 is the same as
that around −k0, as seen in Fig. 1. There is also a theorem
by Nielsen and Ninomiya [13,14] that the WFs with
opposite chiralities are always paired. Therefore, it is
concluded that there must be at least another pair of
WFs at k1 and −k1 with the opposite chirality. This means
that in the Weyl semimetals with broken P symmetry, there
are at least four WFs, two of which have η ¼ 1 at � k0 and
the other two have η ¼ −1 at �k1. This situation is
schematically shown in Fig. 1.
Electromagnetic responses of WFs have unique features

that originate from the Landau levels (LLs) formed by the
magnetic field B. In the presence of B, so called “zero
modes” with the one-dimensional dispersion along the
direction of B are formed by the zeroth LLs. They allow
electrons to be pumped with the applied electric field E
from one Weyl node to another Weyl node of opposite
chirality. Specifically, application of both E and B in a
parallel way increases the imbalance of electron numbers
nη between the WF with opposite chiralities [15]. This
is expressed for ν pairs of WF and anti-WFs by the
equation [16,17]

dQ5

dt
¼ 2ν

ð2πÞ2
e2

ℏ2
E · B; ð3Þ

where Q5 ¼ nη¼1 − nη¼−1. In solids, there exists the
relaxation due to impurity or phonon scattering with which
a nonequilibrium steady state is realized with

Q5 ¼ νe2τinter
4π2ℏ2

E · B; ð4Þ

where τinter is the relaxation time of electrons for the
inter-Weyl-node scattering. This imbalance of electron
numbers between WFs and anti-WFs leads to the chemical
potential difference μ5 between different chiralities. The
chiral magnetic effect discussed in Refs. [18,19] is
expressed by the equation for the current density J as
J ¼ −ðe2=h2Þμ5B. This effect is derived from the axion
electrodynamics action Lax ∝ θðr; tÞE · B, which is
obtained from the Fujikawa Jacobian with θðr; tÞ being
the angle corresponding to the chiral gauge transformation
[20]. Using Eq. (4) with this equation for the chiral
magnetic effect, one obtains J ¼ −ðe4v3=8π2ℏϵ2Þτinter×
ðE · BÞB, where ϵ is the chemical potential measured from
the Weyl point. This describes the magnetotransport, i.e.,
the linear response to the electric field E that is modified
by the external magnetic field. Such current response
J ∝ B2E is allowed in both T-broken and P-broken
Weyl semimetals [18]. In a similar manner, we can consider
another current response J ∝ BE2 in the case of P-broken
Weyl semimetals, as we discuss below.
One of the interesting effects in noncentrosymmetric

systems is the nonreciprocal response, i.e., the propagation
of light or the flow of current that depends on the direction,
with the external magnetic field B or the spontaneous
magnetization M that breaks T symmetry [21–25]. The
time-reversal symmetry in the microscopic dynamics leads
to the Onsager reciprocal relation, which imposes a con-
dition on the conductivity tensor σij as

σijðk;BÞ ¼ σjið−k;−BÞ; ð5Þ

with the wave vector k, and governs the form of the
nonreciprocal responses. A well-known example of non-
reciprocal responses is the optical magnetochiral dichroism
that is realized when the magnetic field B (or magnetization
M) and the electric polarization P form the toroidal moment
T ¼ P × B (or T ¼ P ×M) [21]. In this case, the dielectric
constant ε depends on the relative direction of the pointing
vector S of the light (∝ k) and the toroidal moment T.
Phenomenologically, this can be expressed as ε ¼ ε0þ
αT · k, where k is the wave vector of light. In fact, this
nonreciprocal linear response is consistent with the
Onsager relation in Eq. (5). Meanwhile, nonreciprocal
responses in the transport phenomena have been studied
by Rikken et al. [22]. They discussed that the wave
vector k can be replaced by the velocity or current of
the electrons I in Eq. (5) and, hence, the I · B term is allowed
in the conductivity tensor, which leads to the transport

FIG. 1. Schematic picture of Weyl fermions in noncentrosym-
metric system. Time-reversal symmetry connects the flow of the
Berry curvature bðkÞ at k to that at −k as bð−kÞ ¼ −bðkÞ. This
means that the Weyl fermions at k and −k have the same chirality;
i.e., both are monopoles or antimonopoles. Therefore, there must
be at least four Weyl fermions in noncentrosymmetric Weyl
semimetals with time-reversal symmetry, i.e., two pairs of WFs
and anti-WFs, respectively. When both the magnetic (B) and
electric (E) fields are applied, the charge transfer between Weyl
points occurs between monopoles and antimonopoles due to
chiral anomaly. This phenomenon is shown by the shift of the
chemical potentials (arrows) in the figure, which drives the
system into a nonequilibrium state. Anisotropy between WFs
and anti-WFs (which is allowed by the broken inversion
symmetry) leads to nonreciprocal current response in this non-
equilibrium state induced by the chiral anomaly.
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magnetochiral anisotropy [22–24]. Specifically, the trans-
port magnetochiral anisotropy is the current response
J ∝ BE2 and is described by the resistivity ρ that depends
on the current I and the external magnetic field B as

ρ ¼ ρ0ð1þ γI · BÞ: ð6Þ

This effect has been studied for Bi helix [22], molecular
solid [23], and carbon nanotubes [24] with chiral structure,
where two major microscopic mechanisms have been
proposed. One is the magnetic self-field. In the presence
of the magnetic self-field, the magnetoresistance is
expressed by Δρ ¼ βB2

eff, where B
2
eff is the effective mag-

netic field given by the sum of the external one Bext
and B0 induced by the current I. Because of the helical
structure of the materials, the induced B0 is parallel to I and
produces positive magnetoresistance resulting in Eq. (6).
The other mechanism is the scattering of electrons by
chiral objects such as crystal defects and phonons. It has
also been found that the spin-orbit interaction in Si leads to a
different type of magnetochiral anisotropy of the form
ρ ¼ ρ0½1þ χE · ðI × BÞ�, where the external electric field
E plays the role of the inversion symmetry breaking [25].
The strength of the magnetochiral anisotropy is usually
discussed in terms of the coefficient γ. However, γ
depends on the cross section A of the sample, and a
more intrinsic quantity is γ0 ¼ γA. The coefficients
γ and γ0 have been measured experimentally as γ ≃
10−3 T−1A−1 and γ0 ≃ 10−10 m2 T−1A−1 in Bi helix [22],
γ ≃ 10−3 T−1A−1 and γ0 ≃ 10−11m2 T−1A−1 in molecular
solid [23], γ ≃ 10−1 T−1A−1 and γ0 ≃ 10−10 m2 T−1A−1 in
Si [25,26], and γ ≃ 102 T−1A−1 and γ0 ≃ 10−16 m2 T−1A−1

in carbon nanotube [24]. From the viewpoint of the
applications of magnetochiral anisotropy as a rectifying
function, the larger values of γ and γ0 are desirable because it
enables more efficient rectifier devices which are control-
lable with magnetic fields.
Since the Weyl semimetal has been realized in non-

centrosymmetric materials such as TaAs, it is an interesting
issue to study Weyl semimetals as a platform for the
magnetochiral anisotropy. In particular, it is interesting
to explore its relationship to the chiral anomaly, which is an
origin of various anomalous transport properties. Motivated
by this, we now proceed to the prediction of the magneto-
chiral anisotropy in noncentrosymmetric Weyl semimetals.
It turns out that the inversion symmetry breaking and the
chiral anomaly play a crucial role in the magnetochiral
anisotropy of the Weyl semimetals as follows. In the
noncentrosymmetric Weyl semimetals, the WFs with dif-
ferent chiralities are not equivalent and usually form the
small electron or hole pockets. In the presence of B · E, the
chiral anomaly triggers changes of the sizes of these
inequivalent pockets and, hence, the value of metallic
conductivity. This results in nonlinear resistivity propor-
tional to B in noncentrosymmetric Weyl semimetals.

To substantiate the above idea, we consider WFs at �kþ
and anti-WFs at�k− for which the Fermi velocity is v� and
the Fermi energy measured from the Weyl point is ϵ�,
respectively, as schematically illustrated in Fig. 1. The
parameters v� and ϵ� can differ for the WFs and anti-WFs
due to the broken inversion symmetry. Contributions to the
linear conductivity from the WFs or anti-WFs are written as

σ� ¼ 1

3
e2v2�τintraD�ðϵ�Þ: ð7Þ

Here, τintra is the relaxation time for intra-Weyl-node
scattering, which is usually shorter than τinter [17], and
the density of states D�ðϵÞ is given by

D�ðϵÞ ¼
νϵ2

2π2ℏ3v3�
; ð8Þ

where ν denotes the number of pairs of WFs or anti-WFs.
For example, ν ¼ 12 for TaAs. This reduces to

σ� ¼ νe2

6π2ℏ3

τintraϵ
2
�

v�
: ð9Þ

When the electric field E and the magnetic field B are
applied to the sample in a parallel way, electrons are
transferred from the WFs to the anti-WFs (or vice versa)
due to the chiral anomaly, as shown in Fig. 1. This results in
changes of Fermi energies for the WF and the anti-WFs
given by Δϵ� ¼ �Q5=D�ðϵ�Þ. As a result, the linear
conductivity is also modified as

Δσ� ¼ 1

3
e2v2�τintra

dD�ðϵÞ
dϵ

Δϵ�; ð10Þ

which can be explicitly written as

Δσ� ¼ �ν
e4

6π2ℏ2

v2�τintraτinter
ϵ�

E · B: ð11Þ

These changes of the linear conductivity can become
nonvanishing after summing over the WFs and the anti-
WFs due to the anisotropy in v� and ϵ�. In this case, the
nonlinear current response J ∝ ðE · BÞE is realized and
supports the nonreciprocal current response: in the presence
of the magnetic field B, different magnitude of dc current
flows in the case where E and B are parallel compared to
the case where E and B are antiparallel. Thus, the non-
centrosymmetric Weyl semimetals support the current
rectification effect originating from the chiral anomaly.
Now we quantify the nonreciprocal current response in

Weyl semimetals by defining the intrinsic nonlinear resis-
tivity coefficient γ0 as γ0 ¼ γA with the cross section of the
sample A. This coefficient γ0 does not depend on the cross
section of the sample and can be obtained from the
conductivity change in the above as
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γ0 ¼ −
2Δσ=ðE · BÞ

σ2

¼ −
12π2ℏ4τinter

ντintra

�
v2þ
ϵþ

−
v2−
ϵ−

��
ϵ2þ
vþ

þ ϵ2−
v−

�−2
: ð12Þ

We see that the expression for γ0 is simplified in the
following two cases. (i) In the case of v� ¼ v0, the
nonlinear resistivity coefficient γ0 further reduces to

γ0 ¼ −
12π2ℏ4v40τinter

ντintra

−ϵþ þ ϵ−
ϵþϵ−ðϵ2þ þ ϵ2−Þ2

; ð13Þ

which is proportional to the energy difference of Weyl
points (ϵþ − ϵ−). (ii) In the case of ϵþ ¼ ϵ− ¼ ϵ, this
reduces to

γ0 ¼ −
12π2ℏ4τinter

ντintra

ðvþv−Þ2ðvþ − v−Þ
ðvþ þ v−Þϵ5

; ð14Þ

which is proportional to the Fermi velocity difference
(vþ − v−). Therefore, any asymmetry of band structures
between WFs and anti-WFs can support the rectification
effect proportional to B originating from the chiral
anomaly. In both cases, the magnetochiral anisotropy is
enhanced when the Weyl points are close to the Fermi
energy and the Fermi velocity is large. In particular, we
notice by comparing Eq. (14) and Eq. (9) that the enhance-
ment of magnetochiral anisotropy γ0 ∝ ϵ−5 with ϵ → 0 is
larger than that of magnetoresistance 1=σ ∝ ϵ−2.
Discussions.—We give a crude estimate for the nonlinear

ratio γ. In time-reversal symmetric Weyl semimetals
such as TaAs [10,11], typical parameters are given by
v ¼ 4 × 105 m=s and jϵ�j ∼ 10 meV, and we assume
τintra ≃ τinter for simplicity. In this case, the estimate is
given by γ0 ≃ 3 × 10−8 × m2 T−1A−1. This coefficient γ0
for Weyl semimetals is larger than that for any of the
materials reported in Refs. [21–24]. If we consider
the sample of a cross section A ¼ 0.1 mm2, we obtain
the nonlinear coefficient γ ¼ 0.3 T−1A−1. From the prac-
tical point of view, the dimensionless factor η ¼ γI · B ¼
γ0J · B determines the ratio between the currents of right
and left directions. This rectification efficiency η can be of
the order of unity in our case for J ¼ 103A=mm2 and
B ¼ 0.1 T, while it is typically of the order of 10−4–10−3 in
the systems in Refs. [21–24]. In this regard, Weyl semi-
metals which are metals and have large γ0 offer an efficient
nonreciprocal property in the magnetic field.
Comments are in order for the validity of our semi-

classical approach. We used the semiclassical formula
Eq. (9) for the conductivity change at each Weyl node
in deriving the magnetochiral anisotropy in Weyl semi-
metals. This description is valid when the Landau level
separation ΔϵLL is smaller than the level broadening
h=τintra. When the Landau level separation becomes larger
than the level broadening with a strong magnetic field B,

the energy bands decouple into separate 1D channels of
LLs along the direction of B. In this case, the system does
not exhibit the magnetochiral anisotropy by applying E
because pumping of electrons between left movers and
right movers at Weyl or anti-Weyl nodes does not induce
change of the conductivity (the conductance is always
2e2=h for each 1D channel). Thus, the nonvanishing
magnetochiral anisotropy requires that the system is in
the semiclassical regime ΔϵLL < ℏ=τintra, which constrains
the strength of magnetic field B. Since the Landau level
separation is given by ΔϵLL ≅ 10 meVðB=1 TÞ for the
parameters in the above and h=τintra ¼ 4 meV for the
relaxation time τintra ¼ 1 ps, the magnetic field of
B < 0.4 T justifies the semiclassical approach and supports
the large magnetochiral anisotropy in Weyl semimetals. In
addition, Weyl fermions realized in materials such as TaAs
are not isotropic in the momentum space and show direc-
tional anisotropy (i.e., the Fermi velocity vi differs for
directions i ¼ x, y, z) [27]. This modifies the formula for
magnetochiral anisotropy, but the qualitative behavior such
as the scaling law with ϵ remains unchanged [28]. Finally,
we note that the effect of electron-electron interaction and
disorder is captured by the relaxation times τintra and τinter in
the semiclassics. This indicates that the types of interaction
or disorder affect the ratio τinter=τintra that enters in the
formula for γ0. Namely, when the long-range (short-range)
interaction or long-range (short-range) scatters are domi-
nant, τinter=τintra becomes large (small) and enhances
(suppresses) the magnetochiral anisotropy. Moreover, the
magnetochiral anisotropy (γ and γ0) becomes even larger
than the estimate above due to the factor of τinter=τintra
because the internode relaxation time τinter is usually larger
than intranode relaxation time τintra.
In general, there exist other rectification effects in the

presence of the inversion symmetry breaking and time-
reversal breaking. What is special for the rectification effect
proposed here for Weyl semimetals is that it originates from
the chiral anomaly of WFs and the direction of the
rectification can be controlled by B. Namely, although
the expression is the same as Eq. (6), the crystal structure
determines the direction of the current in the cases of helix
[22,24] or molecular solid [23]. In contrast, in the present
case, the rectification effect is essentially free from the
crystal anisotropy, i.e., determined solely by the relative
angle between I and B. Actually, this is the signature of the
negative magnetoresistance due to the chiral anomaly
[11,29,30]. Since the present magnetochiral anisotropy is
the twin effect of this negative magnetoresistance, it is quite
natural that the magnetochiral anisotropy shows similar
angle dependence. In addition, it is interesting to note that
Fermi pockets of the Weyl and anti-Weyl nodes are found
to be connected in TaP [31]. Even in this case, we can
expect magnetochiral anisotropy since charge transfer is
induced between different parts of the Fermi surface by
applying both E and B fields as a remnant of the chiral
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anomaly, which results in the negative magnetoresistance
observed in Ref. [31]. Since TaP breaks inversion sym-
metry, this charge transfer can also lead to a change of the
linear conductivity and hence the magnetochiral anisotropy.
However, the isotropic form of the coefficient with the I · B
term is modified to some anisotropic form reflecting details
of materials in this case.
To summarize, we have theoretically proposed the

magnetochiral anisotropy of topological origin, i.e., chiral
anomaly of Weyl fermion, in noncentrosymmetric Weyl
semimetals. This effect is missing in the centrosymmetric
Weyl semimetals with magnetism, since it is prohibited by
the inversion symmetry. The magnitude of this effect can be
very large, δρ=ρ0 ∼ 1, and the peculiar angle dependence
will be the signature of this effect as in the case of negative
magnetoresistance. This effect may be utilized in rectifier
devices controlled by the external magnetic field.
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