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The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic
dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to
Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical
localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of
femtosecond pulses. Exponential distribution of the molecular angular momentum—the hallmark of
dynamical localization—is measured directly by means of coherent Raman scattering. We demonstrate the
suppressed rotational energy growth with the number of laser kicks and study the dependence of the
localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude
noise are shown to destroy the localization and revive the diffusive growth of energy.
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The periodically kicked rotor is one of the simplest
systems whose classical motion may become chaotic,
leading to an unbounded diffusive growth of its energy
with the number of kicks. In contrast, the energy growth of
a quantum kicked rotor (QKR) is suppressed due to the
interference of quantum interaction pathways [1,2]. This
effect of dynamical localization has been linked to
Anderson localization in solids [3]. Much like a quantum
particle localizes in the real space of a disordered one-
dimensional lattice, the QKR localizes in the “lattice” of its
rotational states [4]. The wave function of the quantum
rotor does not grow wider with every consecutive kick, but
instead localizes near the initial rotational state, with the
probability amplitude falling exponentially away from it.
Dynamical localization has been studied experimentally

in Rydberg atoms [5–8] and a cold-atom analogue of the
QKR [9–14], yet it has never been observed in the system
of true quantum rotors. A natural choice for a system of
quantum rotors—a diatomic molecule subject to short kicks
from a pulsed external field (microwave, optical, or THz),
has been discussed in multiple theoretical proposals
[15–18]. In a series of recent works [17,19–21],
Averbukh and co-workers suggested a strategy to observe
and study a number of QKR effects in an ensemble of
molecules exposed to a periodic sequence of ultrashort
laser pulses. The effects of a quantum resonance [22,23]
and Bloch oscillations [24] have been verified experimen-
tally. An onset of dynamical localization in laser-induced
molecular alignment has been reported [25], but its two
distinct signatures and necessary components—the expo-
nential distribution of the localized wave function and the
suppressed growth of the rotational energy—have not
been shown.
The difficulty of demonstrating dynamical localization

with molecular rotors stems from a number of experimental

challenges. First, the need to assess the shape of the
rotational distribution calls for a sensitive detection method
capable of resolving individual rotational states over a
range of 2 orders of magnitude [19]. Second, for the
localized state not to be smeared out due to the averaging
over the initial thermal distribution, the latter must be
narrowed down to as close to a single rotational state as
possible, requiring cold molecular samples. Finally, an
important test of dynamical localization, the recovery of
classical diffusion under the influence of noise and
decoherence, demonstrated experimentally with atoms
[7,10,26–28] and theoretically with molecular QKR [19],
requires long sequences of more than 20 strong kicks.
In this Letter, we address all three of the above

challenges and study the rotational dynamics of nitrogen
molecules, cooled down to 27 K in a supersonic expansion
and kicked by a periodic series of 24 laser pulses. We use
state-resolved coherent Raman spectroscopy to demon-
strate the exponential shape of the created rotational wave
packet, indicative of dynamical localization. The depend-
ence of the rotational distribution on the number of pulses
and their strength is investigated. Our ability to resolve
individual rotational states allows for a direct extraction of
the absorbed energy, whose growth is shown to cease
completely after as few as three pulses. To confirm the
coherent nature of the observed localization, we study the
effect of both timing noise and amplitude noise, which are
shown to yield a nonexponential distribution of angular
momenta and revive the diffusive growth of energy. Our
results are in good agreement with the theoretical analysis
of Floß, Fishman, and Averbukh [19] and our own
numerical simulations.
We developed an optical setup capable of generating

high-intensity trains of femtosecond pulses [29]. Exposing
nitrogen molecules to these pulses results in coherent
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rotation, which modulates the refractive index of the gas.
Consequently, the spectrum of a weak probe light acquires
Raman sidebands shifted with respect to its central fre-
quency and polarized orthogonally to its initial polarization
[30,31]. By passing the probe pulses through an analyzer
set at 90° with respect to the input probe polarization, we
detect the rotational Raman spectrum of kicked molecules
with a dynamic range of 4 orders of magnitude in intensity.
The details of the experimental setup are given in the
Supplemental Material [32].
Consider a coherent superposition of two rotational states,

ψJ;MðtÞ ¼ cJ;Me−2πiEJt=hjJ;Mi þ cJþ2;Me−2πiEJþ2t=hjJ þ 2;
Mi, created by a linearly polarized pump field. Here, J and
M are the molecular angular momentum and its projection
on the vector of pump polarization, EJ ¼ hcBJðJ þ 1Þ is
the rotational energy of a rigid rotor with the rotational
constant B, c is the speed of light in vacuum, and h is the
Planck’s constant. The coherent dynamics of such a wave
packet will result in a Raman peak with a J-dependent
frequency shift ΔωJ ¼ ðEJþ2 − EJÞ=h ¼ 2Bcð2J þ 3Þ.
Owing to the selection rules for a two-photon excitation
process, ΔJ ¼ 0, �2 and ΔM ¼ 0, the superposition
ψJ;MðtÞ can originate from any initially populated thermal
state jJ0 ¼ J � 2k;M0 ¼ Mi, where k is an integer. Hence,
the intensity of the observed Raman peak will be propor-
tional to the modulus squared of the induced coherence,
IJ ∝

P
Mhjc�J;McJþ2;Mj2iJ0;M0 , summed over the degenerate

M sublevels and averaged over the initial thermal mixture.
Note that if the initial ensemble contained only one

populated level jJ0 ¼ J0;M0 ¼ M0i, the strength of the
Raman signal would reduce to IJ ∝ PJ;M0

PJþ2;M0
, where

PJ;M ¼ jcJ;Mj2 is the rotational population. For localized
and nonlocalized dynamics of the QKR, we expect expo-
nential or Gaussian population distributions, respectively
[26,35]. In either case, the Raman spectrum can be further
simplified to IJ ∝ ðPJ;M0

Þ2, offering the direct measure of
the rotational population. As we show below, this propor-
tionality holds even at a nonzero temperature of molecules
in our supersonic jet, when the Raman signal is produced
by a number of independent rotational wave packets
originating from different initial states jJ0;M0i. At 27 K
most of the population is initially at J0 ¼ 2 [36]. Thus, the
smallness of M0 ¼ 0, �1, �2 with respect to the angular
momentum of the majority of states in the final wave packet
results in an interaction Hamiltonian which to a good
degree of approximation does not depend on M0 [37].
Having all molecules in the thermal ensemble respond to
the laser field in an almost identical way enables us to
extract rotational populations from the Raman signal as
PJ ¼ a

ffiffiffiffi
IJ

p
, with the coefficient a found from normalizing

the total population to unity.
To determine the exact pulse intensity in the interaction

region, we tune the period of the pulse train to the rotational
period of a wave packet consisting of two rotational states
with J ¼ 2 and J ¼ 4 [38]. Fitting the frequency of the

ensuing Rabi oscillations between the two states provides
an accurate way of measuring the intensity of the pump
pulses [39]. It is often expressed in the dimensionless units
of “kick strength” P ¼ Δα=ð4ℏÞ R E2ðtÞdt, where Δα is the
polarizability anisotropy of the molecule and E the tem-
poral envelope of the pulse. The kick strength reflects the
typical amount of angular momentum (in units of ℏ)
transferred from the laser pulse to the molecule [34]. By
amplifying a sequence of 24 pulses in a multi-pass
amplifier, we were able to reach kick strengths of up to
P ¼ 3 per pulse (2 × 1013 W=cm2).
Figure 1(a) shows a set of 20 Raman spectra, obtained

with 20 different periodicpulse trains. Localized states in the
quantum kicked rotor are known to exist away from the
quantum resonances, i.e., when the time between kicks is not
equal to a rational fraction of the revival period Trev ¼
ð2BcÞ−1 [4]. To avoid strong fractional resonances of low
orders, we chose 10 evenly spaced pulse train periods T in
each of the two intervals, 10=13 < T=Trev < 5=6 and
7=8 < T=Trev < 13=14, with Trev ¼ 8.38 ps for molecular
nitrogen 14N2. The Raman frequency shift (horizontal axis)
has been converted to the rotational quantum number J.

Rotational quantum number J
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FIG. 1. Rotational Raman spectrum of nitrogen molecules
excited with a train of N ¼ 24 pulses at a kick strength of
P ¼ 2.3 for 20 different periodic (a) and nonperiodic (b) sequen-
ces. (c) The average experimental distributions (solid lines) are
compared to the numerical simulations (dashed lines) for both the
periodic (middle red lines) and the nonperiodic (upper black
lines) pulse trains. The initial distribution is shown by the lower
gray lines. (d) The exact calculated populations (dashed lines)
and the approximate populations (solid lines), retrieved from the
experimental Raman signal as discussed in the text. The retrieved
populations are fitted with an exponential or Gaussian function
(thick green lines). The dotted vertical line represents the
excitation limit due to the finite pulse duration.

PRL 117, 144104 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 SEPTEMBER 2016

144104-2



The average Raman signal is plotted with the solid red
line in Fig. 1(c). It decays exponentially across 4 orders of
magnitude and 15 rotational states, and can be clearly
distinguished from the initial Boltzmann distribution (solid
gray line). The remaining oscillations are a consequence of
the nuclear spin statistics of nitrogen, which dictates the
2∶1 ratio for the two independent rotational progressions
consisting of only even and only odd values of angular
momentum. The exact shape of each individual distribution
in Fig. 1(a) depends on the period of the corresponding
train and is affected by its proximity to fractional quantum
resonances of higher orders. In Fig. 1(d), the solid red line
illustrates the distribution of the rotational population,
extracted from the average Raman signal according to
PJ ∝

ffiffiffiffi
IJ

p
. The evident exponential shape, highlighted by

an exponential fit (thick green line) with a localization
length (1=e width) Jloc ¼ 3.2, is a hallmark of dynamical
localization in this true QKR system.
To confirm the coherent nature of the observed locali-

zation, we check the effect of “timing noise” by repeating
the same measurement with a set of 20 nonperiodic pulse
trains. The kick strength is set to the same value of P ¼ 2.3
per pulse, but the time intervals between the 24 pulses in
each train are randomly varied (using the pulse shaping
technique, described in Supplemental Material [32]) around
the mean value of 0.85 Trev with a standard deviation of
33%. All the individual Raman spectra, their average,
and the population distribution retrieved from it [solid
black lines in Figs. 1(b), 1(c), and 1(d), respectively]
show a qualitatively different nonexponential shape.
As expected for a quantum kicked rotor, dynamical
localization is destroyed by noise, while classical diffusion,
with its characteristic Gaussian distribution of angular
momentum (thick green line, 1=e width of Jdiff ¼ 7.4),
is recovered.
In Figs. 1(c) and 1(d), we also compare our experimental

data to the results of numerical simulations, shown with
dashed lines. The latter are carried out by solving the
Schrödinger equation for nitrogen molecules interacting
with a sequence of δ kicks [32]. We calculate the complex
amplitudes cJ;M of all rotational states in the wave packet
created from each initially populated state jJ0;M0i.
Averaging over the initial thermal mixture, we simulate
the expected Raman signals IJ ∝

P
Mhjc�J;McJþ2;Mj2iJ0;M0 ,

and find the exact populations PJ ¼
P

MhjcJ;Mj2iJ0;M0 .
In the case of a periodic sequence of kicks, the observed

Raman line shape [Fig. 1(c)] is in good agreement with the
numerical result down to the instrumental noise floor
around IJ ≈ 10−4. Calculated populations [Fig. 1(d)] dem-
onstrate the anticipated exponential decay with the rota-
tional quantum number, but deviate slightly from the
experimentally retrieved distribution. We attribute this
discrepancy to the small finite thermal width of the initial
rotational distribution, not accounted for in approximating
the populations by

ffiffiffiffi
IJ

p
, as discussed earlier.

When the timing noise is simulated numerically, both the
calculated Raman response and the population distributions
show a nonexponential shape and match the experimental
observations below J ≈ 15. The disagreement at higher
values of angular momentum is because of the finite
duration of our laser pulses (130 fs full width at half
maximum), which is not taken into account in the simu-
lations. At J ≥ 15 (i.e., to the right of the dotted vertical
line), a nitrogen molecule rotates by≳90° during the length
of the pulse, which lowers its effective kick strength and
suppresses further rotational excitation.
Figure 2 shows the evolution of the rotational distribu-

tion with the number of kicks N. For the case of a periodic
pulse train illustrated in Fig. 2(a), the distribution becomes
exponential within a few kicks and hardly changes after
that: Jloc ¼ 3.1, 3.3, and 3.3 for N ¼ 8, 16, and 24,
respectively. In sharp contrast, the line shape in Fig. 2(b)
for nonperiodic kicking remains Gaussian and keeps
broadening with increasing N: Jdiff ¼ 5.6, 6.2, and 7.9.
This behavior demonstrates the destruction of dynamical
localization by timing noise and clearly distinguishes it
from other mechanisms of suppressed rotational excitation.
The dependence of the rotational distribution on the

strength of periodic and nonperiodic kicks is shown in
Fig. 3(a) and 3(b), respectively. As expected for a periodi-
cally kicked quantum rotor, the localization length grows
with increasing P: Jloc ¼ 2.2, 2.9, and 4.7 for P ¼ 1, 2, and
3, respectively. The line shape remains exponential below
the cutoff value of J ≈ 15 discussed earlier. For each kick
strength, the Gaussian distribution after a noisy pulse
sequence is significantly broader (Jdiff ¼ 6.7, 7.5, and
10.8) and lies well above its localized counterpart, despite
being equally affected by the cutoff, thus confirming the
universality of the observed dynamics.
Owing to our state-resolved detection, the total rotational

energy of a molecule can be calculated as
P

JEJPJ, with
populations PJ extracted from the observed Raman spectra
IJ. The rotational energy is plotted as a function of the
number of kicks for multiple excitation scenarios in Fig. 4.
For periodic kicking, the retrieved energy (red squares)
increases during the first three kicks, after which its further
growth is completely suppressed—a prominent feature of
dynamical localization in the QKR. Breaking the perio-
dicity of the pulse sequence with timing noise results in the
recovery of the classical diffusion, manifested by the
continuously increasing rotational energy of the rotors
(black circles). The sublinear growth rate is due to the
finite duration of our laser pulses, mentioned earlier. As
expected, dynamical localization is also susceptible to
“amplitude noise.” When the amplitudes of a periodic
pulse sequence randomly vary with a standard deviation of
41% (introduced by the pulse shaper), the steady energy
growth is again revived (blue triangles). The numerically
calculated rotational energies for the three cases of a
periodic, a nonperiodic and a noisy-amplitude pulse train
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are shown with the dashed red, dotted black, and dash-
dotted blue lines, respectively. Owing to the approximation
in retrieving the rotational populations from Raman spectra,
the calculations are expected to overestimate the true
rotational energies (except when the finite pulse duration
becomes important). Yet, they qualitatively agree with the
theoretical predictions.
In summary, we have demonstrated experimentally the

effect of dynamical localization in a system of true quantum
kicked rotors—a gas of nitrogen molecules exposed to a

periodic sequence of intense laser pulses. Cold initial
conditions and a high-sensitivity state-resolved detection
enabled us to observe the distribution of the molecular
angular momenta evolving into an exponential line shape,
characteristic of a localized state. The suppressed growth of
rotational energy, and the noise-induced recovery of the
classical diffusion have also been presented. Our work
complements previous studies of the QKR in a system of

10-2

10-1

100
noitalupo

P 0

8

16

24
5

10
15 20

0

8

16

24
5

10
15 20

10-2

10-1

100

P
op

ul
at

io
n

(a) (b)

10-2

10-1

0 10 20

Rotational quantum number J

noitalupo
P N=8 N=16 N=24

0 10 20 0 10 20

10-2

10-1

0 10 20

Rotational quantum number J
P

op
ul

at
io

n

N=8 N=16 N=24

0 10 20 0 10 20

FIG. 2. Evolution of the molecular angular momentum distribution with the number of kicks N (each of strength P ¼ 2.3) for a
periodic (a) and nonperiodic (b) excitation. Respective exponential and Gaussian fits, shown individually in the lower plots, indicate the
changes of the distributions at N ¼ 8, 16, and 24 (thick green lines, see text for distribution widths). The dotted vertical line represents
the excitation limit due to the finite pulse duration.

10-2

10-1

P
op

ul
at

io
n

10-3

Rotational quantum number J

0 5 10 15 200 5 10 15 20

(a) (b)

FIG. 3. Angular momentum distributions after 24 pulses of a
periodic (a) and nonperiodic (b) train for three kick strengths:
P ¼ 1 (dotted line), P ¼ 2 (solid line), and P ¼ 3 (dashed line).
The dotted vertical line represents the excitation limit due to the
finite pulse duration.

0 4 8 12 16 20 24
Number of kicks N

20

40

60

E
ne

rg
y 

(a
rb

. u
ni

ts
)

0

FIG. 4. Rotational energy as a function of the number of kicks
N with a mean strength of P ¼ 2.3. Compared are the exper-
imentally retrieved energies (connected symbols) with the nu-
merically calculated ones (lines), for a periodic sequence (red
squares, dashed line), and the same sequence after the introduc-
tion of amplitude noise (blue triangles, dash-dotted line) or timing
noise (black circles, dotted line).

PRL 117, 144104 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 SEPTEMBER 2016

144104-4



cold atoms. In contrast to the latter, true molecular rotors
exhibit discrete energy spectra and offer opportunities for
investigating new quantum phenomena such as edge
localization [21] or the effects of the centrifugal distortion
and rotational decoherence on QKR dynamics [20].
Exploring the possibility of quantum coherent control in
these classically chaotic molecular systems is of great
interest [40].
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