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Breather solutions of the nonlinear Schrödinger equation (NLSE) are known to be considered as
backbone models for extreme events in the ocean as well as in Kerr media. These exact deterministic rogue
wave (RW) prototypes on a regular background describe a wide range of modulation instability
configurations. Alternatively, oceanic or electromagnetic wave fields can be of chaotic nature and it is
known that RWs may develop in such conditions as well. We report an experimental study confirming
that extreme localizations in an irregular oceanic Joint North Sea Wave Project wave field can be tracked
back to originate from exact NLSE breather solutions, such as the Peregrine breather. Numerical NLSE
as well as modified NLSE simulations are both in good agreement with laboratory experiments and
highlight the significance of universal weakly nonlinear evolution equations in the emergence as well as
prediction of extreme events in nonlinear dispersive media.
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Extreme ocean waves, also referred to as freak or rogue
waves (RWs), are known to appearwithoutwarning andhave
a disastrous impact as a consequence of the substantially
largewave heights they can reach [1,2]. Studies onRWshave
recently attracted scientific interest due to the interdiscipli-
nary nature of the modulation instability (MI) of weakly
nonlinear waves [3–5] as well as for the sake of accurate
modeling and prediction of thesemysterious extremes [6–9].
Indeed, exact solutions of the nonlinear Schrödinger equa-
tion (NLSE) provide advanced backbone models that can be
used to describe the dynamics of RWs in time and space,
providing, therefore, deterministic numerical and laboratory
prototypes to reveal novel insights ofMI [10].Within thevast
range of pulsating NLSE solutions on a finite background,
there is one prominent candidate that is known to have
similar physical properties as ocean RWs, namely, the
doubly-localized Peregrine breather (PB) [11,12]. Despite
the fact that it is theoretically assumed that the modulation
period of the PB is infinite, laboratory observations con-
firmed that a finite number of waves in the background is
sufficient to initiate its dynamics in nonlinear dispersive
media [13,14]. These observations also proved that extreme
localizations can be indeed discussed bymeans of theNLSE,
despite violation of the theoretical assumption of the wave
field to be and to remain narrow banded.
Based on this latest progress, it is reasonable to study the

dynamicsof breathers, assuming irregularity of theunderlying
wave field in order to quantify limitations of the approach
and to enlarge the scope of possible applications such as in
oceanography. In fact, the motion of ocean waves can be
indeed narrow banded, such as in the case of swell. However,
whenwinds, currents, andwave breaking are at play, thewave
field may experience strong irregularities, a state that is
supposed to limit applicability of the NLSE. On the other

hand, recent laboratory experiments revealed, for instance, the
persistence of the PB in the presence of a strongwind [15] and
therefore its physical robustness to perturbations. To the best
of our knowledge, the emergence of a RW in an irregular
random wave field has never been tracked back to start from
NLSE breather dynamics in a laboratory environment.
Here, we report an experimental study confirming the

possibility for exact breather solutions to trigger extreme
events in realistic oceanic conditions. According to this, the
PBhas been embedded into an irregular JointNorth SeaWave
Project (JONSWAP)-typewave field [16], thus, into a realistic
irregular ocean configuration with random phases in order to
provide initial conditions for the experiments. In this latter
hybrid surface elevation, the unstable Peregrine wave packet
perturbation, now cloaked in the irregular state, initiates the
focusing of an extreme wave that satisfies the oceanographic
definition of a RW, that is, the height of themeasured extreme
wave indeed exceeds twice the significant wave height of
the wave record. The reported results can be regarded as
complementary to the experimental studies in optics [17,18]
related to the emergence of coherent structures from random
background perturbation. The difference here is that the PB
has been seeded and stimulated in an irregular wave field
rather than observed to spontaneously emerge from a noisy
background. The experimental measurements are compared
with NLSE and modified NLSE (MNLSE) predictions that
show good agreement. This certifies the possible life span of
NLSE models in broad-banded processes, a fact that may be
valuable in the prediction of extreme events as well as in
extending the applicability range of deterministic localized
structures in optics and ocean engineering.
The unidirectional evolution of water wave packets

Ψðx; tÞ in deep water can be modeled by means of the
time NLSE [2,19]
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where g denotes the gravitational acceleration and the wave
frequency ω is connected to the wave number k through the
linear dispersion relation ω ¼ ffiffiffiffiffi

gk
p

. An efficient way to
model and generate a single extreme event on the water
surface can be achieved by use of the PB [11]. When
considering the scaled form of the time NLSE

iψX þ ψTT þ 2jψ j2ψ ¼ 0; ð2Þ
this latter solution with algebraic instability growth rate
reads

ψPðX; TÞ ¼
�
−1þ 4þ 16iX

1þ 16X2 þ 4T2

�
exp ð2iXÞ: ð3Þ

The PB solution, Eq. (3), is depicted in Fig. 1 while its
physical properties are described in the caption of Fig. 1. The
PB solution, Eq. (3), is the subject of intensive studies
[20–22] due to its particular physical features including the
fact that it describes the MI in the case of an infinite
modulation period. Interestingly, this breather (or any other
doubly localized solution of this kind [4,23]) does not
require an infinite number of waves in order to observe
its dynamics in a physical medium [24]. Based on this fact,
the aim of this study is to investigate the possibility of the
PB’s focusing feature to persist in chaotic conditions. To
achieve this, a dimensional form of the solution is embedded
in an oceanic JONSWAP-type wave field, as shall be
described in the following.
The experiments have been performed in a deep-

water facility, see details in Ref. [25]. The dimensional
amplitude of the carrier has been set to be a ¼ 0.75 cm,
while the wave peak frequency is fp ¼ 1.70 Hz. Thus, the
steepness is ak ¼ 0.08. Considering the expression of the
water surface elevation to first-order of approximation
being

ηðx; tÞ ¼ ReðΨðx; tÞ exp ½iðkx − ωtÞ�Þ; ð4Þ

the temporal surface displacement of the Peregrine model
ηPðtÞ is determined in the expectation to observe the
theoretical maximal breather compression 6 m from the
wave generator, i.e., ηPðtÞ¼ ηPðx¼−6; tÞ, see upper panel
of Fig. 2. In the next step, ηPðtÞ was embedded in a chaotic
wave field. Generally, one possible way to generate realistic
oceanic sea states, is for the energy of the irregular wave
field to satisfy a JONSWAP spectrum [26]

SðfÞ ¼ α

f5
exp

�
−
5

4

�
fp
f

�
4
�
γexp ½−ðf−fpÞ2=ð2σ2f2pÞ�: ð5Þ

We set the frequency peak at fp ¼ 1.70 Hz, the significant
wave height of the wave field, defined as 4 times the
standard deviation of the wave field [1], to be Hs ¼ 3 cm,
and the peak enhancement factor γ ¼ 6. Furthermore,
σ ¼ 0.09 if f > fp and σ ¼ 0.07 if f ≤ fp. Note that
the JONSWAP spectrum is just a peaked-enhanced
extension of the Pierson-Moskowitz spectrum [26]. A
JONSWAP surface displacement realization with random
phases φn ∈�0; 2π½ is then determined by [27]

ηJONSWAPð0; tÞ ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SðfnÞΔfn

p
cos ð2πfnt − φnÞ: ð6Þ

The Peregrine surface elevation ηPðtÞ is now added to a
JONSWAP realization with random phases ηRðtÞ, as
described above and modeled in Fourier space accordingly,
so that the new constructed hybrid surface elevation

ηhybridðtÞ ¼ ηPðtÞ þ ηRðtÞ ð7Þ
has the energy peak of ηPðtÞ. The hybrid time series Eq. (7)
is therefore a JONSWAP realization, for parameters as
mentioned above, with an embedded Peregrine-type wave
packet. Therefore, typical Peregrine model characteristics

FIG. 1. Modulus of the doubly localized PB solution [Eq. (3)]
as a function of scaled space and time coordinates X and T,
respectively. At X ¼ 0 ¼ T the normalized amplitude of the
regular wave field is enhanced by a factor of 3.
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FIG. 2. Upper panel: The Peregrine water surface displacement
for ak ¼ 0.08 and a ¼ 0.75 cm, evaluated at x ¼ −6 m (blue
line). Lower Panel: The surface displacement of the PB surface
realization, displayed in the upper panel, embedded in a
JONSWAP wave field having a significant wave height of
3 cm with peak enhancement factor γ ¼ 6 at the same frequency
peak of fp ¼ 1.70 Hz (red line). This signal will then be used to
generate the wave motion by the wave maker.
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are embedded in the hybrid surface elevation [Eq. (7)] as
well. The latter is shown in the lower panel of Fig. 2 and is
now chosen as a boundary condition to drive the wave
maker. We point out that the unstable Peregrine envelope
perturbation is now cloaked in the JONSWAP wave train,
which reveals several wave modulations that are similar
in wave height as the Peregrine-type wave packet. Note
that MI in JONSWAP random sea states has been discussed
in a general context, for instance, theoretically, within
the framework of the NLSE and the inverse scattering
transform (IST) in Refs. [2,28], while numerically in
Refs. [27,29,30] and experimentally in Ref. [31]. The
specific unstable wave packet considered here and located
around 150 s in the JONSWAP wave train is characterized
by PB features. The focusing of the latter during its
evolution proves that breather-type waves may exist and
persist locally, even in the case of an irregular or strongly
perturbed background. This would also emphasize the
importance of integrable systems in the possible detection
of unstable and local wave packets in the ocean.
The evolution of the generated wave field is measured

equidistantly at nine positions along the wave flume. The
last wave gauge is placed 9 m from the wave maker, that is
still at 3 m distance from the beach, hence, far enough to be
affected by strong wave reflections. Figure 3 depicts the
propagation of the wave field with particular emphasis
on the hybrid Peregrine packets, namely, in the intervals
bounded by the dashed lines.
Indeed, we can clearly notice a significant focusing

during the propagation of the Peregrine-type wave packet
evolving in the irregular water wave configuration. The
maximal wave is measured at 7 m in the experiment and
highlights a wave height of 5.22 cm. This latter wave train
is isolated and shown separately in Fig. 4. The time delay of
the extreme localization compared to the corresponding
initial small localization in Fig. 2 corresponds to the delay

expected for the unstable wave packet to propagate with the
group velocity over 7 m. As a matter of fact, we can state
that this Peregrine-type extreme wave is indeed a RW, since
the abnormality index of the maximal wave, defined as
being the ratio of maximal wave height and significant
wave height, exceeds two [1]. Other physical features of
this extreme wave are summarized in Table I.
It is emphasized that due to strong focusing of the wave,

slight spilling breaking has been observed during the
evolution. Nevertheless, these measurements prove that
Peregrine dynamics may indeed persist in a random one-
dimensional sea state with strong irregularities, allowing,
therefore, the tracking of an extreme oceanic event to
backbone models of integrable evolution equations. This
also justifies, once again, the choice of investigating
fundamental theoretical as well as physical properties of
exact NLSE solutions in order to accurately predict RWs in
the ocean [1,2]. We also observe the focusing of other wave
packets in the JONSWAP wave train that may have their
origin in modulation instability. However, none of these
reach the amplitude amplification of the hybrid Peregrine
wave packet. Here, the IST detection method [2,32] may be
a useful technique in characterizing and identifying the
instability mechanisms of these latter packets.
Next, the experimental wave evolution is compared to

numerical simulations, based on NLSE and MNLSE, using
the split-step method. The time MNLSE [33,34] reads

i

�
Ψx þ

2k
ω
Ψt

�
−
1

g
Ψtt − k3jΨj2Ψ

− i
k3

ω

�
6jΨj2Ψt þ 2ΨðjΨj2Þt − 2iΨH½ðjΨj2Þt�

�
¼ 0;

ð8Þ
while H denotes the Hilbert transform. The MNLSE is an
extension of the NLSE that improves approximation of
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FIG. 4. Temporal wave displacement of the maximal Peregrine-
type RW, measured 7 m from the wave maker. The horizontal
lines are described in the figure’s legend.
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FIG. 3. Evolution of the hybrid JONSWAP-Peregrine wave
field over 9 m. The bottom time series (red curve) illustrates the
boundary condition applied to the wave maker, while the dashed
lines limit the unstable Peregrine packet, moving with the group
velocity cg ¼ ω=ð2kÞ ¼ 0.46 m · s−1.
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dispersion and that takes into account the mean flow of the
wave field. The surface measurement, restricted to 120 s
and aligned with respect to the group velocity cg, as well as
both simulation results, are illustrated in Fig. 5. Both
simulation results are in qualitatively good agreement with
the laboratory experiments. We recall that neither the NLSE
nor the MNLSE can model the breaking of the wave field
since at this stage of approximation the wave field is
assumed to be irrotational, among other limitations. In fact,
both evolution equations prove to be very accurate in
predicting the extreme event, occurring roughly at the
expected distance from the wave generator, while surround-
ing modulated wave packets remain quasi-stable during
their evolution. Furthermore, it is interesting to notice that
the maximal wave amplification in the MNLSE prediction
is retarded while being slightly lower compared to the
NLSE simulations, as expected [35]. Even though being
generally less accurate than the MNLSE when the wave
process becomes broad banded [36–38], the NLSE

simulations surprisingly provide a better estimate to the
start of growth and decay of wave envelope compression in
the experiment. Generally, the occurrence of wave breaking
prevents the flawless computation of the field envelope.
The complex breaking effects can be captured by perform-
ing computationally extensive and advanced numerical
simulations solving the Navier-Stokes equations [39,40].
Nonetheless, the simulations reported in the study vindicate
the significance of weakly nonlinear evolution equations in
modeling the motion of ocean waves [41,42].
To conclude, we have shown that doubly localized PB

dynamics may persist on an irregular background. Indeed,
the constructed hybrid Peregrine-JONSWAPwave fieldwith
randomphases is shown to generate a hydrodynamic extreme
event at the expected temporal and spatial locality. The
observed highestwave has an abnormality index that exceeds
two, satisfying the definition of ocean RWs. The experi-
mental results are effectively in good agreement with NLSE
and MNLSE simulations, both are accurate in the prediction

TABLE I. Characteristic properties of the maximal wave in the 300 s wave train, measured 7 m from the wave generator.

Standard deviation Characteristic amplitude Significant wave height Maximal height Abnormality index

σ ¼ 0.64 cm achar ¼ 0.90 cm Hs ¼ 2.56 cm Hmax ¼ 5.22 cm AI ¼ 2.04
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FIG. 5. Upper panel: Surface displacements aligned by the value of the group velocity cg. The envelope of the experimental initial
conditions at the wave maker’s position is computed by means of the Hilbert transform and its modulus is depicted in black dashed lines.
Lower left panel: NLSE simulation prediction results, starting from the computed Hilbert envelope. Lower right panel: MNLSE
simulation prediction results, also starting from the same computed Hilbert envelope as for the NLSE simulations.
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of the single extreme event despite constraints in the
modeling that does not include viscosity, dissipation, break-
ing, and other limitations associated to laboratory experi-
ments. Future work will characterize the influence of initial
JONSWAP amplitudes, mode phases as well as spectral
parameters α and γ, which have a significant influence when
interacting with NLSE breathers in the described approach.
Numerical simulations based on more accurate evolution
equations, such as the higher-order spectral method [43,44],
may also determine the limitations of the approach as well as
reveal new insights into the problem, taking into account that
the latter are much faster to perform compared to laboratory
experiments. This study also discloses that characteristic
breather spectral properties in the physical domain [45], as
well as in the IST plane [2,32] and the distinctive energy
signature of focusing localized structures [46], are indeed
promising features that can be applied for the sake of accurate
deterministic oceanic extreme event detection. To round the
picture, the role of breather applications on realistic direc-
tional sea states is still to be discovered and needs further
investigation [29,47,48]. Because of the interdisciplinary
character of the approach [49], it is expected that analogous
numerical and experimental studies may be motivated, for
instance, in Kerr media and plasma, hence, improving the
decryption of RWs as well as nonlinear localized wave
packets in regular and irregular sea states.

A. C. acknowledges support from the Japan Society for
the Promotion of Science (JSPS) and the Burgundy Region
(PARI Photcom).
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