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We present experimental studies of the power spectrum and other fluctuation properties in the spectra of
microwave networks simulating chaotic quantum graphs with violated time reversal invariance. On the
basis of our data sets, we demonstrate that the power spectrum in combination with other long-range and
also short-range spectral fluctuations provides a powerful tool for the identification of the symmetries and
the determination of the fraction of missing levels. Such a procedure is indispensable for the evaluation of
the fluctuation properties in the spectra of real physical systems like, e.g., nuclei or molecules, where one
has to deal with the problem of missing levels.
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Introduction.—In the last decades, the concept of quan-
tum chaos, that is, the understanding of the features of the
classical dynamics in terms of the spectral properties of the
corresponding quantum system, like nuclei, atoms, mole-
cules, quantum wires, and dots or other complex systems
[1–3], has been elaborated extensively. It has been estab-
lished by now that the spectral properties of generic
quantum systems with classically regular dynamics agree
with those of Poissonian random numbers [4] while they
coincide with those of the eigenvalues of random matrices
[5] from the Gaussian orthogonal ensemble (GOE) and the
Gaussian unitary ensemble (GUE) for classically chaotic
systems with and without time reversal (T ) invariance [6],
respectively, in accordance with the Bohigas-Giannoni-
Schmit conjecture [7].
A multitude of studies with focus on problems from the

field of quantum chaos have been performed by now
theoretically and numerically. However, there are nongeneric
features in the spectra of real physical systems that are not yet
fully understood. Such problems are best tackled experi-
mentally with the help of model systems like microwave
billiards [8,9] and microwave graphs [10,11]. In the experi-
ments with microwave billiards, the analogy between the
scalar Helmholtz equation and the Schrödinger equation of
the corresponding quantum billiard is exploited. Microwave
graphs [10,11] simulate the spectral properties of quantum
graphs [12–14], networks of one-dimensional wires joined at
vertices. They provide an extremely rich system for the
experimental and theoretical study of quantum systems that
exhibit a chaotic dynamics in the classical limit.
The idea of quantum graphs was introduced by Linus

Pauling to model organic molecules [15], and they are also
used to simulate, e.g., quantum wires [16], optical wave-
guides [17], and mesoscopic quantum systems [18,19]. The
validity of the Bohigas-Giannoni-Schmit conjecture was
proven rigourously for graphs with incommensurable bond
lengths in Refs. [20,21]. Accordingly, the fluctuation

properties in the spectra of classically chaotic quantum
graphs with and without T invariance are expected to
coincide with those of random matrices from the GOE and
the GUE, respectively. This was confirmed experimentally
[10,11] for the nearest-neighbor spacing distribution using
microwave networks [22–26].
The statistical analysis of the spectral properties of a

quantum system and the comparison with the conventional
GOE or GUE results requires complete sequences of
eigenvalues belonging to the same symmetry class
[7,27]. Accordingly, the experimental determination of
the chaoticity of a system on the basis of the spectral
fluctuation properties might be far from simple, since
several effects, like, e.g., nongeneric contributions as in
the case of the stadium billiard [28], the existence of tiny
islands of regular dynamics in the chaotic sea [29], mixed
symmetries, or incomplete spectra, may result in deviations
from the random-matrix theory (RMT) predictions.
We are not aware of experimental studies, including the

analysis of long-range spectral fluctuations in incomplete
spectra of chaotic systems with violated T invariance,
which, as outlined below, is essential to be able to obtain
conclusive results on the spectral properties. Our objective
is to fill this gap. T violation was tested experimentally,
e.g., in nuclear spectra and in compound-nucleus reactions
[30,31] and in electron transport through quantum dots,
where T violation is induced by a magnetic field [32].
Furthermore, T violation in scattering systems was studied
thoroughly in experiments with microwave billiards
[33,34]. The effects of T violation on the spectral proper-
ties of the eigenvalues of closed quantum systems have also
been investigated in such systems [35–37]. However, it is
difficult if not impossible to obtain complete T violation in
microwave billiards, whereas its achievement is straightfor-
ward in microwave networks [22–26].
In this Letter, we will develop a procedure to obtain

information on the chaoticity and T symmetry of a classical
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system from the spectral properties of the corresponding
quantum system in the presence of missing levels.
Incomplete spectra are actually a problem one has to cope
with in real physical systems, like, e.g., nuclei and
molecules [38–41], so such a procedure is a requisite for
their analysis [42,43]. It is applied to the spectra of
irregular, fully connected microwave networks simulating
quantum graphs with violated T invariance. The impact of
missing levels on the spectral fluctuation properties is
particularly large for long-range spectral fluctuations. It
was demonstrated numerically in Ref. [44] that the power
spectrum [45,46] is a powerful statistical measure to
discriminate between deviations caused by missing levels
and by the mixing of symmetries. Additional evidence for
these effects may be obtained on the basis of commonly
used statistical measures for short- and long-range spectral
fluctuations [43]. Accordingly, in order to unambiguously
identify the symmetry of the system and the fraction of
missing levels, we considered all these statistical measures.
Experimental setup.—We simulate quantum graphs

experimentally by using a network of coaxial microwave
cables that are coupled by junctions at the vertices. A
photograph of one example is shown in Fig. 1. The
microwave networks comprised six junctions that were
all connected with each other by coaxial cables, in order to
simulate a fully connected quantum graph. The coaxial
cables (SMA-RG402) consist of an inner conductor of
radius r1 ¼ 0.05 cm, which was surrounded by a

concentric conductor of inner radius r2 ¼ 0.15 cm. The
space between them was filled with Teflon. Measurements
yielded a dielectric constant ε≃ 2.06. Below the cutoff
frequency of the first transverse electric mode νc ≃
ðc=πðr1 þ r2Þ

ffiffiffi
ε

p Þ ¼ 33.26 GHz [47,48], only the funda-
mental transverse electromagnetic mode can propagate
inside a coaxial cable. Note that not the geometric lengths
Li of the coaxial cables but the optical lengths L

opt
i ¼ Li

ffiffiffi
ε

p
yield the lengths of the bonds in the corresponding
quantum graph. The analogy between a quantum graph
and a microwave network with the same topology relies on
the formal equivalence of the wave equations governing the
wave function ψ ijðxÞ of a particle moving in the bond
connecting vertices i and j of a quantum graph and the
potential difference UijðxÞ between the inner and the outer
conductors in the corresponding coaxial cable. In the first
case, the equation is given by the one-dimensional
Schrödinger equation with Neumann boundary conditions
at the vertices connecting the different bonds. In the second
case, it coincides with the telegraph equation, again with
Neumann boundary conditions at the junctions connecting
the coaxial cables.
The T violation was induced with five Anritsu PE8403

microwave circulators with low insertion loss which
operate in the frequency range from 7 to 14 GHz. These
are nonreciprocal three-port passive devices. Awave enter-
ing the circulator through port 1, 2, or 3 exits at port 2, 3, or
1, respectively, as illustrated schematically in the upper-
right inset of Fig. 1. The scattering matrix element S11 was
measured using an Agilent E8364B microwave VNA,
connected to a six-arm vertex of the network via an HP
85133-616 flexible microwave cable; see the lower inset in
Fig. 1. Figure 2 shows a part of one measured reflection
spectrum. Because of the unavoidable absorption in the
walls of the cables used as bonds, it exhibits weakly

FIG. 1. Photograph of one realization of a microwave network.
An ensemble of 30 different networks was created by changing
the lengths of four bonds using the phase shifters visible at the
bottom of the graph. Time reversal invariance was induced by five
microwave circulators. One is shown enlarged in the upper-right
inset to illustrate their functionality. For the measurement of the
scattering matrix, the vector network analyzer (VNA) was
coupled to the network via an HP 85133-616 flexible microwave
cable; see the lower inset.

FIG. 2. A reflection spectrum starting at 7 GHz. The circulators
operate only above that frequency. The resonances obviously
overlap. This makes the determination of the resonance frequen-
cies very difficult and thus calls for a reliable theoretical
description that accounts for missing levels.
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overlapping resonances, of which the positions yield the
eigenvalues of the corresponding quantum graph.
Accordingly, their determination was a nontrivial task.
We compared the measured reflection spectra of an
ensemble of 30 different realizations of graphs with the
same total optical length L≃ 7.2 m. It was generated by
varying the lengths of four bonds of lengths Li ≃
50–65 cm with phase shifters (see Fig. 1) in steps of
�0.112 cm, thus yielding slightly differing positions of the
resonances. An estimate using Weyl’s law for quantum
graphs [13] indicated that approximately 4% of the eigen-
values were missing.
Fluctuations in the experimental spectra.—For the

analysis of the spectral properties of the microwave net-
works, first, the resonance frequencies need to be rescaled in
order to eliminate system-specific properties like the total
length L of the graph. This is done with the help of Weyl’s
law, which states that the resonance density ρðνÞ ¼ L=ð2πÞ
is uniform. Accordingly, the rescaled eigenvalues are deter-
mined from the resonance frequencies as ϵi¼νiL=ð2πÞ, with
the frequencies sorted such that νi ≤ νiþ1.
A commonly used measure for short-range spectral

fluctuations is the nearest-neighbor spacing distribution,
that is, the distribution of the spacings between adjacent
eigenvalues si ¼ ϵiþ1 − ϵi. For long-range spectral fluctu-
ations, these are the variance Σ2ðLÞ of the number of
eigenvalues in an interval L and the stiffness of the
spectrum Δ3ðLÞ, given by the least-squares deviation of
the integrated resonance density of the eigenvalues from the
straight line best fitting it in the interval L [5]. The
histogram and the circles in Fig. 3 show the nearest-
neighbor spacing distribution PðsÞ in Fig. 3(a), its integral
IðsÞ ¼ R

s
0 ds

0Pðs0Þ in Fig. 3(b), the number variance Σ2 in
Fig. 3(c), and the stiffnessΔ3 in Fig. 3(d). The experimental
curves were generated by computing the averages of the
statistical measures obtained for each of the 30 microwave
networks. Here, for each of them 250 resonance frequen-
cies could be identified. While the short-range spectral
fluctuations in Figs. 3(a) and 3(b) seem to coincide well
with those of the eigenvalues of random matrices from the
GUE (solid black lines), this is not the case for the long-
range spectral fluctuations in Figs. 3(c) and 3(d).
Another statistical measure for long-range spectral fluc-

tuations is the power spectrum of the deviation of the qth
nearest-neighbor spacing from its mean value q,
δq ¼ ϵqþ1 − ϵ1 − q. It is given in terms of the Fourier

spectrum from “time” q to k, SðkÞ ¼ j~δkj2, with

~δk ¼
1ffiffiffiffi
N

p
XN−1

q¼0

δq exp

�
−
2πikq
N

�
ð1Þ

when considering a sequence of N levels. The power
spectrum has not established itself widely, even though,
as we will demonstrate in this Letter, it provides a
particularly useful statistical measure, especially in the

presence of missing levels. It was shown in Refs. [45,46]
that for k=N ≪ 1, the power spectrum which, in fact, only
depends on the ratio ~k ¼ k=N exhibits a power law
dependence hSð~kÞi ∝ ð~kÞ−α. Here, for regular systems
α ¼ 2 and for chaotic ones α ¼ 1, independent of whether
T invariance is preserved or not. The power spectrum and
this power law behavior were studied numerically in
Refs. [49–52], experimentally in a microwave billiard with
classically chaotic dynamics in Ref. [53], and for a singular
rectangular microwave billiard in Ref. [54]. Recently, it was
successfully applied to the measured molecular resonances
in 166Er and 168Er [39]. These systems preserve T
invariance, whereas for the case of violated T invariance
in the presence of missing levels, there was a lack of
experimental studies. This was the motivation for the
experiments presented in this Letter.
In Fig. 4, the experimental power spectrum (circles) is

compared to that for the eigenvalues of random matrices
from the GUE (solid black line). Both curves are plotted
versus ~k. We observe that, first, both curves start to deviate
from each other below log10 ~k≲ −0.5. Second, the exper-
imental hSð~kÞi does not exhibit a clear power law behavior
for small ~k. These deviations, and also those observed for
the long-range spectral fluctuations in Figs. 3(c) and 3(d),
cannot result from a mixing of symmetries [29,49–52],
since the short-range spectral fluctuations are well
described by GUE statistics. However, similar to
Ref. [39], they can be attributed to the small fraction of
missing levels, as demonstrated in the sequel.

FIG. 3. Spectral properties of the rescaled resonance frequen-
cies. (a)–(d) The nearest-neighbor spacing distribution PðsÞ
(histogram), its integral IðsÞ (circles), the number variance Σ2

(circles), and the stiffness Δ3 (circles), respectively. The exper-
imental results are compared to those of the eigenvalues of
random matrices from the GUE curves (solid black lines) and the
corresponding missing-level statistics (dashed red lines) with
φ ¼ 0.965; see the main text.
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Missing level statistics.—As stated above, the complete-
ness of energy spectra is a rather rare situation in exper-
imental investigations [40–42]. The problem of missing
levels can be circumvented in open systems, like micro-
wave billiards or microwave networks, where scattering
matrix elements are available. Their fluctuation properties
provide measures for the chaoticity, e.g., in terms of their
correlation functions [33,34] or the enhancement factor
[11,55,56]. For closed systems, analytical expressions were
derived for incomplete spectra based on RMT in Ref. [43].
The nearest-neighbor spacing distribution is expressed in
terms of the ðnþ 1Þst nearest-neighbor spacing distribution
Pðn; sÞ, with Pð0; sÞ ¼ PðsÞ. It is well approximated by
Pðn; sÞ≃ γsμe−ϰs

2

, where for n ¼ 0, 1, μ ¼ 1, 4 for the
GOE and μ ¼ 2, 7 for the GUE [36]. The coefficients γ and
ϰ are obtained from the normalization of Pðn; sÞ to unity
and the scaling of s to average spacing unity, respectively. If
the fraction of detected eigenvalues φ is close to unity,
the nearest-neighbor spacing distribution accounting for
missing levels is given by

pðsÞ≃ P

�
s
φ

�
þ ð1 − φÞP

�
1;

s
φ

�
þ…: ð2Þ

Similarly, the number variance Σ2 and the stiffness Δ3

may be expressed in terms of those for complete spectra
(φ ¼ 1)

σ2ðLÞ ¼ ð1 − φÞLþ φ2Σ2

�
L
φ

�
ð3Þ

and

δ3ðLÞ ¼ ð1 − φÞ L
15

þ φ2Δ3

�
L
φ

�
: ð4Þ

In Fig. 3, the functions Eqs. (2)–(4) are plotted for
φ ¼ 0.965 as red (gray) dashed lines. The agreement with
the corresponding experimental results is remarkable. Like
the experimental nearest-neighbor spacing distribution, the
curve obtained from Eq. (2) is close to that of the
eigenvalues of randommatrices from the GUE. This feature
enabled the assignment of the GUE as the RMT model
applicable to the experimental data. In order to corroborate
that the deviations from the GUEs observed in Figs. 3 and 4
indeed are solely due to missing levels, we analyzed power
spectra. An analytical expression was derived for the power
spectrum of incomplete spectra in Ref [44]:

hsð~kÞi ¼ φ

4π2

�
Kðφ~kÞ − 1

~k2
þ K½φð1 − ~kÞ� − 1

ð1 − ~kÞ2
�

þ 1

4sin2ðπ ~kÞ −
φ2

12
; ð5Þ

which for φ ¼ 1 yields that for complete spectra. Here,
0 ≤ ~k ≤ 1 and KðτÞ is the spectral form factor, which
equals KðτÞ ¼ τ for the GUE.
This analytical result is shown as dashed red curve in Fig. 4.

The fraction of observed levels, actually, was determined to be
φ ¼ 0.965� 0.005 from the power spectrum, which depends
particularly sensitively on the value of φ [57]. This is
illustrated in Fig. 5,wherewe compare its asymptotic behavior
to experimental results. Here, the fraction φ was varied by
randomly eliminating resonance frequencies. The power
spectra for different values of φ lie close to one another.
However, they still are clearly distinguishable. To illustrate
this, each curve was shifted by unity with respect to its lower

FIG. 4. The average power spectrum. The experimental results
(black circles) are compared to that for the eigenvalues of random
matrices from the GUE (solid black line) and the corresponding
missing level statistics (dashed red line). The fraction of the
observed levels was unambiguously determined to be
φ ¼ 0.965� 0.005, by comparison of the experimental power
spectrum to the latter.

FIG. 5. Illustration of the sensitivity of the average power
spectrum to changes in the fraction of observed levels φ. The
symbols show results that were generated from the experimental
data by randomly eliminating resonance frequencies. The right-
pointing triangles show the data from Fig. 4 with φ ¼ 0.965,
diamonds correspond to φ ¼ 0.9, upward-pointing triangles to
φ ¼ 0.85, circles to φ ¼ 0.8, downward-pointing triangles to
φ ¼ 0.75, and squares to φ ¼ 0.7. In order to allow a distinct
demonstration of the excellent agreement between the theoretical
and the experimental results, all except the curve for φ ¼ 0.965
were shifted with respect to their lower neighbor by unity.
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neighbor in Fig. 5. Even for the case of only 70% of observed
levels, we find good agreement between the analytical result
Eq. (5) and the experimental one.
Conclusions.—We present the first experimental studies

of the fluctuation properties in incomplete spectra of micro-
wave networks simulating chaotic quantum graphs with
broken time reversal symmetry. The experimental results are
in good agreement with the analytical expressions for
missing level statistics Eqs. (2)–(4) derived in Ref. [43]
and Eq. (5) for the power spectrum given in Ref. [44]. All
these expressions explicitly take into account the fraction of
observed levels φ; however, the power spectrum is particu-
larly sensitive to it. Therefore, we used it to determine the
fraction of observed levels φ ¼ 0.965� 0.005 in the exper-
imental spectra. The symmetry (GUE) of the system was
determined from the nearest-neighbor spacing distribution,
which depends only weakly on φ for φ≳ 0.9. Long-range
spectral fluctuations were then used to confirm this assign-
ment. The excellent agreement between the experimental
and the analytical results, demonstrated in Fig. 5 for a range
of 0.7 ≤ φ ≤ 0.965, clearly proves the vigorousness of the
power spectrum for the description of incomplete spectra of
quantum systems with violated T invariance.
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