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We show theoretically that a photonic topological insulator can support edge solitons that are strongly
self-localized and propagate unidirectionally along the lattice edge. The photonic topological insulator
consists of a Floquet lattice of coupled helical waveguides, in a medium with local Kerr nonlinearity. The
soliton behavior is strongly affected by the topological phase of the linear lattice. The topologically
nontrivial phase gives a continuous family of solitons, while the topologically trivial phase gives an
embedded soliton that occurs at a single power and arises from a self-induced local nonlinear shift in the
intersite coupling. The solitons can be used for nonlinear switching and logical operations, functionalities
that have not yet been explored in topological photonics. We demonstrate using solitons to perform
selective filtering via propagation through a narrow channel, and using soliton collisions for optical
switching.
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Topologically nontrivial photonic bands, analogous to
electronic topological insulators, have now been realized
and studied in a variety of photonic structures [1–10].
These “photonic topological insulators” (PTIs) feature edge
states that are topologically protected against certain
classes of disorder, and they have interesting potential
applications as robust waveguides and delay lines. Thus far,
PTIs have mostly been studied in the linear limit, in which
existing concepts of band topology can be directly applied
to the electromagnetic wave equations, such as by mapping
the propagation equations for a linear-photonic lattice to the
linear Schrödinger equation [6]. Even recent studies of PTIs
arising in optically nonlinear systems, such as exciton
polaritons in quantum wells, have focused on topological
edge states that are linear perturbations around a steady-
state nonlinear background [11–13]. There have been only
a handful of investigations into the nonperturbative non-
linear dynamics that could arise in PTIs [14–18]. Notably,
Lumer et al. discovered a localized stationary soliton lying
in the bulk of a two-dimensional (2D) PTI, which can be
interpreted as a point region of a different topological phase
that is “self-induced” by topological edge states circulating
around it [14]. Ablowitz et al. have found evidence for
moving edge solitons in weakly nonlinear 2D PTIs, though
this was done by taking broad envelope superpositions of
existing topological edge states, and reducing the system to
a 1D nonlinear Schrödinger equation [15]. In 1D lattices,
nonlinear dynamics of boundary states and self-induced
topological transitions have also been studied [16,17].
This Letter describes a class of moving lattice edge

solitons that arise in experimentally feasible 2D PTIs
with Kerr nonlinearity. Unlike in Ref. [15], the solitons
are derived ab initio, without using broad envelope

approximations, in a realistic photonic lattice; furthermore,
they can arise whether the underlying lattice is topologi-
cally trivial or nontrivial in the linear limit. The underlying
topological phase strongly affects the soliton properties. In
the topologically trivial phase, where the linear lattice lacks
topological edge states, the solitons are topologically self-
induced, similar to the stationary solitons found in
Ref. [14], except that these can move unidirectionally
along the edge. They appear to be “embedded” lattice
solitons, meaning that they coexist with extended linear
modes without being stabilized by a gap [19–21]; the
soliton solution occurs at a single power, at which the
radiative loss via coupling to small-amplitude linear waves
happens to vanish. We note that the only embedded lattice
solitons experimentally observed so far have been sta-
tionary [22]; well-localized moving lattice solitons are
predicted to exist based on discrete models [20,23,24],
but they have been challenging to realize experimentally.
On the other hand, when the underlying lattice is topo-
logically nontrivial, moving edge solitons occur over a
continuous range of powers and are stabilized by the
dispersion features of the linear topological edge modes.
The existence of strongly localized moving solitons

opens up a range of interesting possibilities for performing
signal processing in PTI lattices [25], beyond what could be
accomplished using linear topological edge states or sta-
tionary solitons [14]. We present two representative exam-
ples: (i) self-focusing of edge modes, allowing them to be
“squeezed” through narrow channels without backreflec-
tion, and (ii) collisions between edge and bulk solitons,
which can be used for all-optical signal switching.
The photonic lattice, shown schematically in Fig. 1(a),

consists of a 2D square lattice of helical waveguides,
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“staggered” so that neighboring waveguides (in different
sublattices) have helix phase shifts of π relative to each
other; hence, each waveguide approaches its four neighbors
sequentially during each helix cycle [26]. The waveguides
are otherwise identical. In the linear optics regime, we have
previously shown that the photonic band structure can be
either topologically trivial (a conventional insulator) or
nontrivial (an anomalous Floquet PTI), depending on the
interwaveguide couplings [26]. Now, we include a local
Kerr nonlinearity in the optical medium. In the paraxial
approximation, the propagation of a monochromatic beam
envelope ψðx; y; zÞ obeys

i∂zψ ¼ −
1

2k0
∇2⊥ψ −

k0
n0

ðnLðx; y; zÞ þ n2jψ j2Þψ : ð1Þ

This is a nonlinear Schrödinger equation with the axial
coordinate z playing the role of time; k0 ¼ 2πn0=λ is the

wave number, ∇2⊥ ≡ ∂2
x þ ∂2

y is the transverse Laplacian
operator, n0 is the background refractive index, and nL and
n2jψ j2 are the linear and nonlinear local refractive index
deviations from n0. The function nLðx; y; zÞ corresponds to
the helix lattice described above, with mean waveguide
spacing a, helix radius R0, and modulation period Z. We
adopt parameter values consistent with fused silica glass at
wavelength λ ¼ 1550 nm: n0 ¼ 1.45, nL ∼ 2.7 × 10−3 in
the waveguides (and nL ¼ 0 outside), and n2 ¼
3 × 10−20 m2=W [27] (self-focusing nonlinearity; a defo-
cusing nonlinearity can give rise to similar effects [28]).
The waveguides have circular cross sections with radius
4 μm. The paraxial beam intensity jψ j2 is normalized by
the characteristic intensity I0 ¼ 1016 W=m2, for which the
nonlinear index shift n2I0 is comparable to nL. For the
modal area of one waveguide, w2

0 ∼ ð10 μmÞ2, this requires
peak powers ∼1 MW, accessible with pulsed lasers [27].
In the linear regime (n2 → 0), the Floquet eigenmodes of

the system can be obtained by solving

ÛðZÞψ ¼ exp ½−i
Z

Z

0

ĤðzÞdz�ψ ¼ e−iβZψ ; ð2Þ

where Ĥ is the Hamiltonian in Eq. (1), and β is the Floquet
quasienergy defined modulo 2π=Z [6,26,31–33]. The top-
ology of the Floquet band structure is governed by an
effective coupling angle θ0 ∈ ½0; π� controlling the band
gap size, with the system topologically nontrivial when
0.25π < θ0 < 0.75π [26,28].
We use beam propagation simulations of Eq. (1) to study

nonlinear waves produced by injecting light at the edge of a
semi-infinite strip. First, consider a lattice that is topologi-
cally nontrivial in the linear limit, with coupling angle
θ0 ¼ 0.6π (from helix parameters a ¼ 22 μm, R0 ¼ 4 μm,
and Z ¼ 1 cm). When the input power P is very low, the
initial single-site excitation couples to linear topological
edge states. As shown in Fig. 1(c), this produces a wave
packet propagating in one direction along the edge (since
the edge states are unidirectional) while undergoing broad-
ening (since the dispersion of the edge states is not perfectly
linear [26]). Upon increasing P, the Kerr nonlinearity
induces self-focusing, and we observe solitonic propaga-
tion along the edge of the lattice, as shown in Figs. 1(d)
and 1(e). We momentarily put aside the issue of soliton
stability, which will be discussed below. To quantify
the self-focusing, Fig. 1(b) plots the peak intensity
Imax ¼ maxðjψ j2Þ and the inverse participation number
P−1 ¼ R jψ j4dxdy=ðR jψ j2dxdyÞ2, after propagation
through five helix cycles. At a critical power Pc, the soliton
becomes localized to almost a single site, as shown in
Fig. 1(e). This self-focusing effect does not appear to be
describable using a purely on-site nonlinearity of the sort
used in Refs. [14,15], but it can be modeled by a nonlinear
shift in the effective coupling angle [34,35]:
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FIG. 1. (a) Schematic of a photonic lattice of helical wave-
guides forming a square lattice in the x − y plane. On each
sublattice (red and blue; right and left in inset respectively), the
helix phase is staggered by π. (b)–(e) Beam propagation simu-
lation results showing solitonic self-focusing in a topologically
nontrivial lattice. The lattice consists of a strip four lattice
constants wide, with single-site input on the edge at z ¼ 0.
(b) Peak intensity Imax and inverse participation number P−1 at
z ¼ 5Z (i.e., after five helix cycles), versus input power P.
Corresponding in-plane intensity profiles at various propagation
distances, for (c) P → 0, (d) P ¼ 0.8Pc, and (e) P ¼ Pc, where
Pc is the power at which the soliton is most localized (i.e., P−1 is
the largest).
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θeff ≈ θ0 − θNLjψ j2: ð3Þ

In previously studied discrete nonlinear lattice models,
similar coupling nonlinearities were shown to produce
“compact” solitons that are perfectly localized to a few
sites [36,37]. In our photonic lattice, the shift is due to the
self-focusing Kerr nonlinearity increasing the waveguide
depth, thus reducing the evanescent interwaveguide cou-
pling. When P ¼ Pc, the coupling angle reaches
θeff ¼ 0.5π, which corresponds to perfect coupling into
neighboring waveguides at each quarter cycle of the helix.
This is the “middle” of the topological insulator phase,
where the edge states are maximally localized.
We now turn to a lattice that is topologically trivial in the

linear limit. As shown in Figs. 2(a) and 2(b), injecting light
at the edge of the nonlinear lattice at a certain input power
can produce a strongly localized moving soliton. Since the
linear lattice in this case lacks topological edge states, the
soliton in Fig. 2(b) is “topologically self-induced”: the field
intensity near the soliton drives the local region of the
lattice from the topologically trivial phase to the nontrivial
phase via Eq. (3). Here, the linear lattice has the coupling
angle θ0 ¼ 0.9π (from helix parameters a ¼ 25 μm,
R0 ¼ 6 μm, and Z ¼ 2 cm), and the nonlinearity drives
the local coupling angle below the topological transition
located at θ ¼ 0.75π. Unlike the topologically self-induced
stationary solitons observed in Ref. [14] (in a nonstaggered

helical lattice), these solitons are mobile, and they move
unidirectionally along the edge.
In contrast to the solitons found in the nontrivial lattice,

the soliton in Fig. 2(b) is only observed near a specific input
power Pes. Figure 2(c) plots the peak intensity and inverse
participation number versus the input power P. Both
quantities are strongly suppressed except near
Pes ≈ 1.5 MW. For other values of P, the input light
diffracts strongly into the bulk, and the wave packet decays
with z until the nonlinearity becomes negligible [38].
The stability of a soliton depends on whether there exist

small-amplitude linear waves that the soliton can decay
into. For stable propagation at velocity v, the soliton must
avoid resonance with linear waves in its moving frame,
whose quasienergies are βvðkxÞ≡ βðkxÞ − vkx [20]. In
Figs. 2(d) and 2(e), we plot the moving-frame local density
of states (LDOS) on the lattice edge. For the previous
topologically nontrivial lattice (corresponding to the results
shown in Fig. 1), we see from Fig. 2(d) that the LDOS is
dominated by the linear topological edge states (the bulk
states’ contribution is about 1% of the bulk contribution in
the trivial lattice). Since the edge states are unidirectional
and have nearly linear dispersion, they only occupy a
narrow range of βv. This allows soliton families to avoid
resonating with linear modes [15]. In the topologically
trivial lattice, however, there is significant LDOS for all
βv’s because the contributing bulk modes are not unidi-
rectional. Thus, a traveling edge wave is typically desta-
bilized by decaying into small-amplitude bulk modes. As
an exception, at a specific power Pes, coupling to the bulk
modes could vanish, leading to the formation of an
“embedded soliton” [19–21]. This explains the semistable
behavior shown in Figs. 2(b) and 2(c): embedded solitons
typically have a finite basin of attraction, so, for P≳ Pes,
the excess energy is radiated away, but if P is too large, the
wave packet fails to relax to the soliton.
To further verify that these are soliton solutions, we

formulated a discrete model for the photonic lattice and
searched for nonlinear modes using the Floquet self-
consistency method developed in Ref. [14]. In the non-
trivial lattice, the procedure converged numerically to
solutions corresponding to moving solitons on the edge,
as well as stationary gap solitons in the bulk. In the trivial
lattice, we obtained convergence to an embedded moving
soliton localized to a single site and verified that its power
can be described by Pes ≈ ðθ0 − π=2Þ=θNL. Details are
given in the Supplemental Material [28].
Another practical constraint on soliton stability comes

from bending losses, i.e., radiation into nonlattice modes.
For the chosen helical waveguide parameters, bending
losses for the linear topological edge states are very low,
on the order of 1% per helix cycle [26]. Figure 3(a) shows
the power retained on the edge waveguides with an
increasing z. In the nontrivial lattice, after an initial
power-dependent transient oscillation (caused by the choice
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FIG. 2. Self-induced nonlinear edge modes in a topologically
trivial lattice. (a),(b) Intensity profiles after propagation through
z ¼ 5Z, starting from a single-site excitation (the dotted circle),
for (a) the zero-power (linear) limit P → 0, and (b) input power
Pes corresponding to the embedded soliton. (c) Peak intensity
Imax and inverse participation ratio P−1 at z ¼ 5Z, versus input
power P. (d),(e) Local density of states along the edge, for the
nontrivial and trivial lattices in the linear limit, plotted using the
moving-frame quasienergies defined by βvðkxÞ≡ βðkxÞ − vkx.
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of single-waveguide excitation), the solitons have decay
rates comparable to the linear topological edge states. In the
trivial lattice, however, the soliton abruptly destabilizes
after ∼15 cycles due to bending losses reducing the power
below Pes and triggering a breakup.
We now ask how robust the solitons are against defects

and lattice shape deformations. Topological edge states of
linear PTIs are known to be highly robust, limited mainly
by finite-size effects (i.e., scattering to the opposite edge)
and losses [9,26], so long as the paraxial limit (or any other
assumption responsible for topological protection) holds.
In Fig. 3(b), we study the effects of a defect formed by
detuning the depth of a single waveguide on the edge. In the
nontrivial lattice, the robustness of the solitons is found to
be comparable to the linear edge states. In the trivial lattice,
the soliton survives for small defect strengths, but suffi-
ciently strong defects cause it to abruptly destabilize (by
leaving the “stability band” around Pes). The embedded
solitons are thus inherently less robust than the linear
topological edge states and the solitons of the nontrivial
lattice. On the other hand, both soliton types are robust
against changes in the lattice shape; they are able to move
around corners and missing sites without backscattering,
and with much less dispersion compared to the edge states
of the linear PTI [28].
We conclude with two examples of using solitons to

perform nonlinear filtering and switching. These will use
the solitons of the nontrivial lattice due to their greater
stability. In Figs. 4(a)–4(c), we show how a narrow channel
can act as a power-dependent filter. The channel is one unit
cell wide, connecting two wider strips. In the linear regime
[Fig. 4(a)], the edge states fail to pass through the channel
and are instead diverted, because topological protection is
lost when there is a significant spatial overlap of modes on
opposite edges. Increasing the input power P [Fig. 4(b)]
causes the formation of a soliton that is sufficiently strongly
localized to pass through the channel. As shown in

Fig. 4(c), the transmittance exhibits an 8.6-fold variation
as P goes from 0 to 0.55 MW.
Next, Figs. 4(d) and 4(e) shows how a collision between

a moving edge soliton and a stationary gap soliton can
function as a nonlinear optical switch. The stationary gap
soliton is produced by exciting a waveguide one unit cell
away from the edge [28]. The two solitons are initialized
with the relative phase Δφ, and both have input power
P ¼ Pc for which the soliton is maximally localized (see
Fig. 1). We find that the result of the collision depends
strongly on Δφ [39,40]. Figure 4(e) shows how the peak
intensities on the edge and bulk sites, at z ¼ 5Z after the
collision, vary with Δφ. Certain choices of Δφ allow us to
almost completely destroy one of the solitons.
In summary, we predict the existence of strongly

localized, mobile, and unidirectional edge solitons in
experimentally feasible 2D photonic topological insulator
lattices with Kerr nonlinearities. Like topological edge
states, the solitons move unidirectionally and can bypass
corners and missing-site defects without backscattering.
The solitons in the nontrivial lattice inherit some of the
linear edge states’ robustness against perturbations such as
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FIG. 3. Stability of nonlinear edge modes in trivial and non-
trivial photonic lattices. (a) Relative edge intensity (the ratio of
the edge intensity to the initial edge intensity at z ¼ 0) versus
propagation distance z. (b) Relative edge intensity at z ¼ 5Z,
after scattering off a defect with the normalized strength
Δ≡ δnk0Z=ð2πn0Þ, where δn is the detuning of the defect
waveguide’s refractive index.
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FIG. 4. Nonlinear filtering and switching using edge solitons.
(a)–(c) Power-dependent filtering by a narrow channel. The
intensity profile at z ¼ 8Z is plotted for (a) the linear limit
P → 0 and (b) the nonlinear regime at P ¼ 0.55 MW. The input
light is injected uniformly on four waveguides marked by green
circles, and the lattice boundary is marked by blue dashes.
(c) Transmittance through the channel (defined as the total
intensity on the edge sites to the right of the channel) versus
input power P. (d),(e) Optical switching by bulk-edge soliton
collisions. (d) Intensity profiles at z ¼ 0 before the collision, and
at z ¼ 5Z after the collision. (e) Postcollision peak intensities in
the bulk and edge waveguides versus the relative phase Δφ of the
inputs.
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waveguide detunings. The trivial lattice supports topologi-
cally self-induced embedded solitons, which are unstable
against perturbations and bending losses. We have studied
two simple examples of using solitons for nonlinear
filtering and switching. In future work, it would be
interesting to explore, using these solitons for nontrivial
signal processing tasks, to determine whether the topo-
logical lattice design confers practical advantages over
previously studied solitonic lattices, and to look for similar
nonlinear modes in other photonic, polaritonic, or phononic
lattices.
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