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We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom
system Ybþ-Rb, recently suggested as a promising candidate for the experimental study of open quantum
systems, quantum information processing, and quantum simulation. We identify the second-order spin-
orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Ybþ-Rb collisions. Our results
are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110,
160402 (2013)] of hyperfine relaxation rates of trapped Ybþ immersed in an ultracold Rb gas. The
calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak
T−0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis
underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such
as Ybþ-Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold
atomic gases.
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The exquisite controllability of trapped atomic and
molecular ions is key to their use in emerging quantum
technologies, including quantum information processing
[1], quantum simulation [2,3], and precision measurement
[4,5]. They also serve as ideal prototype systems for
exploring quantum decoherence [6,7], many-body physics
[2,3], ultracold chemistry [8,9], and astrochemistry [10]. In
particular, hybrid ion-atom systems consisting of trapped
ions immersed in an ultracold gas of neutral atoms display a
remarkably rich dynamical behavior [7–9,11–17]. Several
experimental groups have observed thermalization, inelas-
tic relaxation, chemical reactions, and three-body recombi-
nation to occur in ultracold collisions of Ybþ þ Yb [13],
Ybþ þ Ca [14], Ybþ þ Rb [7,8,11,12], Caþ þ Rb [15],
Baþ þ Ca [16], and Baþ þ Rb [17]. A major goal of these
experiments is to achieve sympathetic cooling of the ion by
using ultracold atoms as a cooling medium [18,19].
In a recent experimental realization of such a hybrid ion-

atom system, Köhl and co-workers immersed a single
trapped Ybþ ion in an ultracold cloud of spin-polarized Rb
atoms [7,8,11,12]. While momentum-changing collisions
with ultracold Rb atoms led to efficient cooling of the
heavy ion, Köhl et al. observed unexplainably rapid spin
relaxation and decoherence [7]. As both the ion and the
atom were initially prepared in their fully spin-polarized
internal states, these surprising results suggest the presence
of an efficient spin-changing mechanism, which destroys
spin coherence and prevents quantum information storage
in the ion’s internal degrees of freedom. The observation of
large relaxation and decoherence rates [7] casts doubt on
the suitability of hybrid ion-atom systems for quantum

information and precision measurement applications.
It remains unclear, however, whether the observed relax-
ation and coherence-destroying mechanisms [7] are uni-
versal or specific to the Ybþ-Rb system.
Accurate quantum scattering calculations based on

ab initio interaction potentials reported for several ion-atom
systems [20–22] provide valuable insight into the mecha-
nisms of cold ion-atom collisions and enable the develop-
ment of multichannel quantum defect models [23] and
semiclassical approximations [24,25]. Useful as they are,
these calculations do not take into account spin-
nonconserving interactions, such as the magnetic dipole
and second-order spin-orbit (SO) interactions, which play an
important role in collisions of highly magnetic [26,27] and
heavy [28,29] neutral atoms, causing rapid two-body losses
similar to those observed experimentally for Ybþ-Rb [7].
The long-range polarization interaction leads to a large
number of partial wave contributions to ion-atom scatter-
ing—even at the lowest collision energies attainable in
current experiments (∼100 mK). The spin-nonconserving
interactions break the rotational symmetry of the scattering
problem and couple the partial wave states with the spin
states of the ion-atom collision complex [29,30], dramati-
cally increasing the computational complexity of the calcu-
lations. As a result, the effects of these interactions on
ultracold ion-atom collisions remain completely unexplored.
Here, we report accurate quantum scattering calculations

on the prototypical heavy ion-atom collision system
Ybþ-Rb studied in recent experiments [7]. We solve the
ion-atom quantum scattering problem exactly using state-
of-the-art ab initio molecular potentials and SO coupling
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matrix elements of the ðYbRbÞþ complex [31]. We obtain
quantitative agreement with the measured relaxation rates
for 171Ybþ-Rb collisions and identify the second-order SO
interaction as the dominant source of rapid collisional spin
relaxation. These results demonstrate that modern ab initio
and quantum scattering calculations can predict the colli-
sional properties of hybrid ion-atom systems with quanti-
tative accuracy. They strongly suggest that light ion-atom
combinations such as Ybþ-Li, where the second-order SO
interaction is much weaker, should be used in experimental
applications that require long spin relaxation and coherence
times, such as quantum information processing, quantum
simulation, and precision measurement.
The quantum spin dynamics in Ybþ-Rb collisions is

described by the Hamiltonian [20,21,28]

Ĥ ¼ −
1
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ð1Þ

where Ŝi represents the electron spins of Rb (i ¼ a) and
171Ybþ (i ¼ b), μ is the reduced mass of the Ybþ-Rb
collision complex, R is the internuclear separation, L̂ is the
orbital angular momentum of the complex, and R̂ describes
the orientation of the complex in the laboratory frame with
the quantization axis z defined by the magnetic field vector
B. The asymptotic Hamiltonian of atom i in Eq. (1) is
Ĥi ¼ γiÎi · Ŝi þ 2μB · Ŝi [20,21,28], where Îi is the atom’s
nuclear spin, V̂ðRÞ ¼ P

S;MS
VSMS

ðRÞjSMSihSMSj is the

interaction potential which depends on the total spin Ŝ ¼
Ŝa þ Ŝb of the collision complex and its projection MS on
the B-field axis, and α is the fine structure constant.
Figure 1 shows the relevant Ybþ-Rb potentials of 1Σþ

and 3Σþ symmetry [correlating to the Ybþð2SÞ-Rbð2SÞ
limit] obtained from high-level ab initio calculations [31].
These potentials are accurate enough to yield collision-
induced charge transfer (CCT) rates in quantitative
agreement with experiment [11,31–33]. The collisional
processes of interest here occur on time scales much
shorter than CCT (≪ 10 s), so we neglect the weak
coupling to the ground X1Σþ state of Yb-Rbþ [11,31].
An essential new aspect of this work, as compared to the

previous theoretical studies of ion-atomcollisions [20–22], is
the presence of theR-dependent SO interaction [the last term
in Eq. (1)] between the 3Σþ and 1Σþ states, which does not
conserve the total spin of the collision complex and causes
inelastic transitions in spin-polarized Ybþ-Rb collisions
[28,29]. This interaction arises in the second order due to
first-order couplings between the ground Σ and excited Π
states.As shown inFig. 1, the 3Π state,which correlates to the

Ybþð3PÞ-Rbð2SÞ limit, crosses the potentials of both the 1Σ
and 3Σ states at short range, leading to a resonant enhance-
ment of the second-order SO coupling. Themagnitude of this
coupling is proportional to the splitting between the relativ-
istic 3Σþ

0 and 3Σþ
1 components of the 3Σþ state, as described

in the Supplemental Material [34].
We solve the ion-atom quantum scattering problem by

expanding the stationary eigenfunctions of the Hamiltonian
(1) in direct-product basis functions ϕnðR̂Þ ¼ jFamFa

i
jFbmFb

ijlmli, where jFimFi
i represents the atomic hyper-

fine states and jlmli stands for the eigenstates of L̂2 and L̂z.
The radial expansion coefficients F nðRÞ satisfy a system of
coupled-channel (CC) equations,

�
d2

dR2
−
lðlþ 1Þ

R2
þ 2μE

�
F nðRÞ

¼ 2μ
X

n0
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where E is the total energy and V̂SO stands for the second-
order SO interaction [the last term in Eq. (1)]. The matrix
elements of the interaction potential and Ĥi in Eq. (2) are
calculated as described elsewhere [37], whereas those of
V̂SO are derived in the Supplemental Material [34].
The CC equations (2) are solved numerically at fixed

total angular momentum projection M ¼ mFa
þmFb

þml

on a grid of R ∈ ½3; 3 × 104�a0 with a grid spacing of
0.01a0. All basis states with l ≤ 40 are included in

FIG. 1. Scalar-relativistic interaction potentials for Ybþ-Rb of
1Σ and 3Σ (solid lines) and 3Π (dashed line) symmetries and the
second-order SO coupling [blue (grey) line] as a function of R.
(Inset) Magnetic field dependence of the lowest hyperfine energy
levels of 171Ybþ and 87Rb (Zeeman splittings are exaggerated for
clarity). The initial states chosen for scattering calculations are
highlighted in (grey) color.
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scattering calculations to produce converged results in the
experimentally relevant range of collision energies of
40–240 mK [7], leading to a total of 1276 channels for
M ¼ 0. Scattering boundary conditions are applied after
reaching the outer end of the integration grid to extract the
scattering S-matrix elements, which are used to compute
the total (M-summed) scattering cross sections and tran-
sition rates.
Figure 2 shows the calculated inelastic rate constant for

the j1; 1i → j0; 0i hyperfine transition in Ybþ induced by
collisions with spin-polarized Rb at B ¼ 6 G. First, we
observe good agreement between the calculated and mea-
sured rates [7]. At T ¼ 150 mK, the calculated rate is
4 times smaller than the Langevin collision rate [38],
kL ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffi
C4=μ

p ¼ 2.1 × 10−9 cm3=s. Second, the exact
quantum rate displays a weak T−0.3 temperature depend-
ence, whereas the ion-atom Langevin rate is temperature
independent [7], indicating significant deviations from
statistical behavior in ultracold Ybþ-Rb collisions. Third,
as both Ybþ and Rb are fully spin polarized prior to
collision, the large magnitude of the inelastic rate can only
be caused by a spin-nonconserving interaction. Test cal-
culations show that omitting the magnetic dipole interac-
tion from the Hamiltonian (1) does not change the results,
leading us to conclude that it is the second-order SO
interaction that is responsible for the rapid spin relaxation
observed experimentally [7].
To estimate the uncertainty of the theoretical results, we

performed quantum scattering calculations with modified
1Σ and 3Σ potentials [31] obtained by shifting the short-
range parts of the potentials by a constant factor
ΔR ¼ �0.02a0. While this modification results in a large
change of the s-wave scattering lengths, the calculated
inelastic rates at 40 mK vary only by þ10.6

−16.6 %, as shown in

Fig. 2. This is because Ybþ-Rb scattering at the collision
energies of interest here (∼20–100 mK) occurs in the
multiple partial wave regime, where the resonance con-
tributions due to individual partial waves are averaged out,
and the rates are determined by the value of the SO
coupling at the inner turning points of the interaction
potentials. Figure 2 shows that the calculated upper limit
of the inelastic rate agrees well with the measured value
(see Table I), suggesting that left-shifted Ybþ-Rb potentials
provide a better agreement with the measured inelas-
tic rates.
Figure 3 shows the normalized product-state distribu-

tions

PðFa;mFa
;Fb;mFb

Þ ¼ kFa;mFa ;FbmFb
=kinel; ð3Þ

calculated from the inelastic rates kFa;mFa ;FbmFb
, where

kinel ¼
P

FamFa ;FbmFb
kFa;mFa ;FbmFb

is the total inelastic rate

for a given j2; 2iajFb;mFb
i initial state. The inset of Fig. 3

shows the marginal distribution PðFb;mFb
Þ obtained by

summing Eq. (3) over all final hyperfine states of Rb. While
the populations of the hyperfine states j1; 0ib and j0; 0ib of
Ybþ are similar, collision-induced energy transfer into the
j1;−1ib state is about 50 times slower. This selection rule
was assumed by Ratschbacher et al. in their analysis of
experimental data [7], and our calculations provide a
rigorous justification of this assumption. The j1; 1ib →
j1;−1ib transition is suppressed in first order because the
matrix element of the SO interaction [34] contains the 3j
symbol

�
Fb 1 F0

b

−mFb
mFb

−m0
Fb

m0
Fb

�
;

which vanishes identically for Fb ¼ F0
b ¼ 1 and mFb

¼ 1,
m0

Fb
¼ −1. In contrast, the dominant transitions to the j10ib

and j00ib hyperfine states are allowed to first order.
Figure 3 shows that the product-state distributions (3) for

the dominant transitions to the final states j1; 0ib and j0; 0ib
are peaked at the initial state j2; 2ia of Rb. While there is a
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FIG. 2. Inelastic rate constant for the j11i → j00i transition in
Ybþ induced by collision with Rb (j2; 2i). Full line, theory
(present work); circle with error bars, experiment [7]; dashed line,
Langevin rate scaled down by a factor of 2.8 for clarity. The
shaded area shows the uncertainty arising from the inaccuracies
in ab initio interaction potentials.

TABLE I. Calculated and measured hyperfine relaxation rates
(in units of 10−10 cm3=s) for F- and mF-changing transitions in
Ybþ-Rb collisions at B ¼ 6 G. All rates are computed from
inelastic cross sections at 40 mK except for the j11ib → j00ib
transition, for which the thermally averaged rate at T ¼ 150 mK
is given.

Transition Theory Experiment

j1; 1ib → j0; 0ib 5.40þ0.57
−0.90 6.2(0.3)

j1; 1ib → j1; 0ib 3.33 3.4(0.6)
j1; 1ib → j1;−1ib 0.19 0
j1; 0ib → j1;−1ib 2.62 3.4(0.6)
j1; 0ib → j1; 1ib 3.62 5.1(0.6)
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clear preference for the initial state j2; 2ia to remain
unchanged in a collision, hyperfine-changing transitions
to the final states j1; 0ia and j1; 1ia also occur with
significant probabilities (∼15%–25%), which are weakly
sensitive to the final hyperfine state of Ybþ. The hyperfine
distributions for the suppressed j1; 1ib → j1;−1ib transi-
tion are, in contrast, peaked at the lowermost Rb
state j1; 1ia.
The experimental estimates of the Ybþ temperature T

were limited by a lack of insight into an important heating
mechanism involving collisional deexcitation of the j2; 2ia
hyperfine state of Rb [7,39]. This temperature sets the
collision energy with ultracold Rb atoms and is given by
ϵTmax, where Tmax ¼ 240 mK and ϵ is the probability of a
Rb hyperfine state change in a Langevin collision [7].
To improve the experimental estimate of T, we calculated ϵ
as a sum of transition probabilities to the F0

a ¼ 1 hyperfine
manifold of Rb. For the relevant j1; 1ib → j0; 0ib transition
in Ybþ, we calculate ϵ ¼ P

mFa
PðFa ¼ 1; mFa

;Fb ¼ 0;
mFb

¼ 0Þ ¼ 0.64. An improved estimate of the ion temper-
ature for comparison with the theoretical value is
thus T ¼ ϵ × 240 mK ≈ 150 mK.
Thus far, we have focused on hyperfine transitions from a

single initial state j1; 1ib in spin-polarized Ybþ-Rb colli-
sions. Table I compares the results of our scattering calcu-
lations for the other hyperfine transitions in Ybþ with the
measured values [7]. We observe quantitative agreement
between experiment and theory for all of the transitions
except j1; 0ib → j1; 1ib and j1; 0ib → j1;−1ib, the rates of
which were not directly measured, but rather inferred from
174Ybþ measurements [7,39] under several assumptions,
including the following: (1) the relation γex=γSR ¼ 0.5

between the excitation and relaxation rates based on the
values observed for 174Ybþ [39], (2) the ratio r of the
j1;−1ib → j10ib and j10ib → j11ib transition rates is equal
to 1.5 (we find r ¼ 1.4), and (3) the transitions changingmF
by 2 or more are strictly forbidden. Additionally, collision-
induced hyperfine relaxation from other than the fully
spin-polarized initial states of Ybþ can proceed via the
spin-exchange mechanism due to the differing phase shifts
associated with the singlet and triplet potentials [40,41].
As this mechanism is more sensitive to the uncertainties of
the interaction potentials, we expect the calculated and
experimentally derived j1; 0ib → j1; 1ib and j1; 0ib →
j1;−1ib transition rates to be more uncertain than the
j1; 1ib → j0; 0ib transition rate. The hyperfine relaxation
rates are of the same order of magnitude (10−10 cm3=s)
and they are not very sensitive to the initial state, which is
consistent with a strong spin-dependent coupling mecha-
nism between the internal states, mediated by both
S-conserving spin-exchange and S-changing second-order
SO interactions.
In summary, we present the first rigorous theoretical

analysis of quantum spin dynamics in cold heavy ion-atom
collisions. Unlike all of the previous theoretical models
[20–22], our CC approach explicitly takes into account
spin-nonconserving interactions, which play a critical role
in collisions of heavy ions with coolant atoms. Our
calculations show that the lowermost Σ states of heavy
ion-atom complexes exhibit a short-range crossing with the
states of Π symmetry, giving rise to a strong second-order
SO interaction (Fig. 1), which leads to rapid spin relaxation
in cold ion-atom collisions. Our calculated spin relaxation
rates are in good agreement with recent experiments [7]
(Fig. 2 and Table I). As the magnetic dipole interaction
makes a negligible contribution to the overall Ybþ-Rb spin
relaxation rate, we conclude that heavy ion-atom collision
systems exhibiting strong SO interactions (such as Ybþ-Rb
and Baþ-Rb [42]) are unsuitable for quantum technological
applications, which require long spin relaxation and coher-
ence times. Rather, for these applications, it is advisable to
use light coolant atoms such as Li or Na, where the SO
interactions are weaker. Indeed, recent ab initio calcula-
tions [22] suggest that the 3Π electronic state of the Ybþ-Li
complex does not cross the Σ states, which indicates that
the SO interaction in this system will be suppressed,
leading one to expect favorably long spin relaxation and
coherence times. Our quantum scattering approach can be
used to investigate the dynamics of inelastic relaxation in
both light and heavy ion-atom collision systems. It can also
be extended to study the mechanisms of collisional
decoherence of atomic and molecular ions immersed in
ultracold atomic buffer gases [43], for which the first
experimental results have recently become available [7].
Collisional decoherence is one of the most fundamental
mechanisms responsible for the quantum-to-classical tran-
sition [44], and it has so far been tested experimentally only

FIG. 3. Normalized product-state distributions PðFa;mFa
;

Fb;mFb
Þ [Eq. (3)] plotted for a collision energy of 40 mK and

B ¼ 6 G. Adjacent bars correspond to the different hyperfine
states of Ybþ: (left) j00ib, (middle) j10ib, and (right) j1;−1ib.
(Inset) Ybþ product-state distributions summed over all of the
final hyperfine states of Rb.
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at elevated temperatures [45]. Suppressing the decoherence
mechanisms with external electromagnetic fields [46]
would be an important step toward quantum technological
applications based on trapped ion-atom hybrid systems.
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