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We show that the scale (conformal) anomaly in field theories leads to new anomalous transport effects
that emerge in an external electromagnetic field in an inhomogeneous gravitational background. In
inflating geometry the QED scale anomaly locally generates an electric current that flows in opposite
direction with respect to background electric field (the scale electric effect). In a static spatially
inhomogeneous gravitational background the dissipationless electric current flows transversely both to
the magnetic field axis and to the gradient of the inhomogeneity (the scale magnetic effect). The anomalous
currents are proportional to the beta function of the theory.
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Anomalous transport phenomena emerge in systems
with quantum anomalies that break certain classical sym-
metries and lead to nonconservation of associated (other-
wise classically conserved) currents [1,2]. For example, the
axial symmetry of chiral (massless) fermions is broken by
the axial anomaly that naturally leads to nonconservation of
the axial current at the quantum level [3]:

∂μj
μ
A ¼ e2

16π2
Fμν

~Fμν; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field-strength tensor of an
Abelian gauge field Aμ and ~Fμν ¼ 1

2
εμναβFαβ.

The simplest anomalous transport laws induced by the
axial anomaly (1) are the chiral separation effect (CSE)
[4,5] and the chiral magnetic effect (CME) [6,7]:

jA ¼ μV
2π2

eB; jV ¼ μA
2π2

eB; ð2Þ

that generate, respectively, the axial current jA and the
vector current jV along the axis of the external magnetic
field B in dense (μV ≠ 0) and in chirally imbalanced
(μA ≠ 0) medium. The chemical potential μV and the chiral
chemical potential μA are thermodynamically conjugated to
the total charge density j0V and to the axial charge density
j0A, respectively.
The axial anomaly (1) is also responsible for the density-

dependent contributions to the chiral vortical effects [8,9],
which generate vector and axial currents,

jV ¼ μVμA
π2

Ω; jA ¼
�
T2

6
þ μ2V þ μ2A

2π2

�
Ω; ð3Þ

in chiral fluids that rotate with the angular velocity Ω. The
temperature-dependent T2 part of the rotation-induced axial
current in Eq. (3) is a result of the mixed axial-gravitational
anomaly [10]

∂μj
μ
A ¼ −

1

384π2
Rμναβ

~Rμναβ; ð4Þ

where ~Rμναβ is the Riemann curvature tensor of a curved
space background and ~Rμναβ ¼ 1

2
εμνγλRγλ

αβ. Despite that
the anomaly (4) is formulated in a curved background, the
associated anomalous transport is realized in a flat space
too. In the presence of electromagnetic field in a curved
background the total divergence of the axial current is given
by the sum of the right-hand sides of Eqs. (1) and (4).
The anomalous transport laws (2) and (3) are invariant

under time inversion T: t → −t. Since the entropy cannot
decrease with time, the T invariance implies that these
anomalous currents correspond to reversible processes
which do not generate entropy. In other words, the
anomalous transport laws are nondissipative phenomena.
They play an increasingly important role both in condensed
matter physics and in high energy physics [11,12].
Besides the axial and mixed axial-gravitational anoma-

lies, a class of physically interesting quantum field theories
is also subjected to a scale anomaly (Also known as the
dilatation, trace, conformal or Weyl anomaly.), which
breaks classical scale invariance of the theory at the
quantum level [3]. Since it seems now quite natural to
think that at least some quantum anomalies may be
associated with certain anomalous transport laws [1,2],
we would like to ask a natural question: does the conformal
anomaly lead to a new anomalous transport law? In this
Letter we consider a simplest case of a U(1) gauge theory
with one massless Dirac fermion field ψ described by the
following Lagrangian:

L ¼ −
1

4
FμνFμν þ ψ̄ iDψ ; ð5Þ

where D ¼ γμDμ and Dμ ¼ ∂μ þ ieAμ is the covariant
derivative. This theory does not involve any characteristic
length or energy scale since its Lagrangian (5) possesses
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only dimensionless coupling e. Therefore, at a classical
level the massless electrodynamics (5) is invariant under
redefinition of the absolute length or energy scales. The
corresponding scale transformations are generated by the
dilatation current,

jμD ¼ Tμνxν; ð6Þ
where the (symmetric) energy-momentum tensor

Tμν ¼ −FμαFν
α þ

1

4
ημνFαβFαβ

þ i
2
ψ̄ðγμDν þ γνDμÞψ − ημνψ̄iDψ ð7Þ

can be obtained by the variation of the action S with respect
to the background metric gμν:

TμνðxÞ ¼ 2
δS

δgμνðxÞ
; S ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
L; ð8Þ

with g ¼ detðgμνÞ. We restore the flat space-time metric
gμν → ημν ¼ diagðþ1;−1;−1;−1Þ after the variation.
Classically, the dilatation current (6) has zero divergence

because the classical equations of motion imply

∂μj
μ
D ¼ Tα

α; ð9Þ
while the trace of the energy-momentum tensor (7) van-
ishes at the classical level, Tα

α ¼ 0. Therefore, the classical
theory is invariant under the scale transformations.
However, the scale invariance is broken by quantum

fluctuations. Consequently, the quantum expectation value
of the right-hand side of Eq. (9) is nonzero and, con-
sequently, on a quantum level the dilatation current (6) is no
more conserved.
Consider a Weyl scale transformation of the flat metric,

ημν → gμνðxÞ, with
gμνðxÞ ¼ e2τðxÞημν: ð10Þ

For small scale factor τðxÞ with jτðxÞj ≪ 1 the metric
perturbation is δgμνðxÞ ¼ 2τðxÞημν and Eq. (8) implies

S → Sτ ¼ Sþ
Z

d4xτðxÞTα
αðxÞ þOðτ2Þ; ð11Þ

where Sτ is the action (8) of the theory (5) in a background
of the rescaled flat metrics (10). Therefore, the expectation
value of the trace of the energy-momentum tensor is given
by the functional derivative

hTα
αðxÞi ¼

1

i
1

Z½Acl; τ�
δZ½Acl; τ�
δτðxÞ ð12Þ

of the generating functional

Z½Acl; τ� ¼
Z

DADψ̄DψeiSτ ½AþAcl;ψ̄ ;ψ �; ð13Þ

where we have also coupled our system to a background of
the classical electromagnetic field Acl

μ ¼ Acl
μ ðxÞ. The latter

allows us to express the electric (vector) current of the
fermions,

jμðxÞ≡ jμVðxÞ ¼ eψ̄ðxÞγμψðxÞ; ð14Þ

in terms of a functional derivative

hjμðxÞi ¼ i
1

Z½Acl; τ�
δZ½Acl; τ�
δAcl

μ ðxÞ
: ð15Þ

The scale invariance should generally be broken at the
quantum level because the (dimensionless) gauge coupling
e ¼ eðμÞ is a function of the (dimensionful) renormaliza-
tion scale μ. The Weyl scale transformation (10) changes
the renormalization scale, μ → μþ δμ with δμ ¼ μδτ
and, consequently, shifts the coupling e → eþ δe by
δe ¼ βðeÞδτ, where

βðgÞ ¼ d
d ln μ

e2ðμÞ
4π

ð16Þ

is the β function of the theory. Therefore, at the quantum
level the trace of the energy-momentum tensor is nonzero
(In contrast to the axial anomaly (1), the scale anomaly (17)
is not a pure one-loop result. Consequently, multiloop
corrections may appear in Eq. (17); see Ref. [3] for detailed
discussion.),

hTα
αðxÞi ¼

βðeÞ
2e

FμνðxÞFμνðxÞ; ð17Þ

and the dilatation current (6) is no more conserved
according to Eq. (9). In Eq. (17) the field-strength tensor
Fμν corresponds to the external background field Acl

μ (for
the sake of simplicity we omit hereafter the superscript “cl”
which refers to the classical background field).
Various aspects of conformal anomalies in hydrody-

namics were discussed in Ref. [13]. Below we show that the
scale anomaly (17) leads to an unexpected (anomalous)
contribution to electric current induced by external electro-
magnetic fields in spatially inhomogeneous or inflating or
deflating gravitational backgrounds associated with dilata-
tional perturbations of the form (10). In order to demon-
strate the essence of the effect we consider the system at
zero temperature and zero density so that both usual and
chiral chemical potentials are zero, μV ¼ μA ¼ 0. In our
derivation we follow the logic of Ref. [14] which we apply
to the case of the scale anomaly in the coordinate space.
The electric current hji induced by weak external

electromagnetic field AμðxÞ and by small local dilatations
of the metric τðxÞ can be expanded in series over these
perturbations:

hjμi ¼ hjμiKubo þ hjμidilat þ hjμiscale þ � � � : ð18Þ
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The terms in Eq. (18) are proportional, respectively, to the
first powers of A and τ, and to their product Aτ. All higher-
order terms are denoted by the ellipses.
The first term in Eq. (18) is given by the standard, linear-

response Kubo formula

hjμðxÞiKubo ¼ −i
Z

d4yΠμνðx; yÞAνðyÞ; ð19Þ

where

Πμνðx; yÞ ¼ hjμðxÞjνðyÞi0; ð20Þ

is a two-point correlation function of electric currents. The
subscript 0 in h…i0 indicates that the expectation value (20)
is calculated in a flat Minkowski space-time in the absence
of external perturbations (Aμ ¼ 0, δgμν ¼ 0).
The second term in Eq. (18) corresponds to a linear

response of the current to the pure dilatation (11),

hjμðxÞidilat ¼ i
Z

d4yΠμ
Dðx; yÞτðyÞ; ð21Þ

where

Πμ
Dðx; yÞ ¼ hjμðxÞTα

αðyÞi0 ð22Þ

is a two-point correlation function of the electric current
(14) and the trace of the energy-momentum tensor (7). The
correlation function (22) can be calculated by varying the
anomalous expectation value (17) with respect to external
electric field Aμ in a manner of Eq. (15), and setting Aμ ¼ 0
after the variation. Since the anomaly (17) is quadratic in
gauge field Aμ the correlation function (22) is zero.
Therefore, the electric current (21), induced by the dilata-
tion, is vanishing in the linear response approxima-
tion, hjμðxÞidilat ≡ 0.
In our Letter we are mainly interested in the third term in

Eq. (18). This term describes a scale-anomalous contribu-
tion to the expectation value of the electric current. It
corresponds to a mixed gauge-gravitational response in the
double-linear approximation that includes one power of the
electromagnetic potential Aμ and one power of the scale
factor τ. According to Eq. (19)

hjμðxÞiscale ¼
Z

d4y
Z

d4zΠμν
D ðx; y; zÞAνðyÞτðzÞ; ð23Þ

where the three-point function

Πμν
D ðx; y; zÞ ¼ hjμðxÞjνðyÞTα

αðzÞi0 ð24Þ

can be evaluated by applying twice a functional differ-
entiation with respect to the background gauge field Aμ to
the right-hand side of the scale anomaly relation (17):

Πμν
D ðx;y;zÞ¼−

δ2hTα
αðzÞi

δAμðxÞδAνðyÞ
���� Aμ→0

gμν→ημν

¼−
2βðeÞ
e

ðημνηαβ−ημβηναÞ∂
2δðx− zÞδðy− zÞ

∂xα∂yβ :

ð25Þ
Substituting Eq. (25) into Eq. (23) one gets the anoma-

lous electric current generated by the scale anomaly (17) in
the presence of both the scale dilatation τ of the metric (10)
and the background electromagnetic field Aμ:

hjμðxÞiscale ¼
2βðeÞ
e

½−FμνðxÞ∂ντðxÞ þ τðxÞjμclðxÞ�: ð26Þ

The first term in Eq. (26) is proportional to the
electromagnetic field Fμν, which is induced by the classical
electric current jμcl ¼ −∂νFμν. The classical current makes
the local contribution to the anomalous electric current
given in the second term of Eq. (26). The presence of both
terms guarantees that the anomalously generated current
(26) is conserved: ∂μhjμðxÞiscale ¼ 0.
Our result (26) is obtained via the three-point function

(24) which is defined and calculated in the flat Minkowski
space-time. Thus, we do not expect a metric-dependent
renormalization of the current (26) in the adopted linear
order in gravitational perturbation. The same property is
shared by a contribution to the chiral vortical effect coming
from the axial-gravitational anomaly [10], which can also
be calculated in the flat space in a linear-response approxi-
mation in metric g0i.
We are interested in properties of the anomalous electric

current far from the classical sources. Therefore, setting the
classical current to zero in the region of the dilatation,
jμcl ¼ 0, we get, from Eq. (26),

hjμðxÞiscale ¼ −
2βðeÞ
e

FμνðxÞ∂ντðxÞ: ð27Þ

In components, the anomalous current and the anoma-
lous charge generated by the scale anomaly (27) in the
background of the electric field E and the magnetic field B
are, respectively, as follows:

hjðxÞiscale ¼ σðxÞEðxÞ þ FðxÞ × BðxÞ; ð28Þ

hj0ðxÞiscale ¼ FðxÞ · EðxÞ; ð29Þ

where

σðt; xÞ ¼ −
2βðeÞ
e

∂τðt; xÞ
∂t ; ð30Þ

Fðt; xÞ ¼ 2βðeÞ
e

∇τðt; xÞ; ð31Þ

and τðxÞ is the local scale factor of the flat metric (10).
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The scalar quantity σ, given by Eq. (30), plays a role of
an anomalous Ohm’s conductivity. Indeed, in a spatially
uniform (∇τ≡ 0) background gμν ¼ e2τðtÞημν with a time-
dependent scale factor τ ¼ τðtÞ, the scale anomaly gen-
erates the anomalous electric current (28) which takes
precisely the functional form of Ohm’s law:

hjðt; xÞiscale ¼ σðtÞEðt; xÞ for ∇τ ¼ 0: ð32Þ

Equations (30) and (32) describe the scale electric effect
(SEE): the scale anomaly generates the local electric
current in the background of the external electric field in
a space-time with a time-dependent scale factor.
The SEE (32) emerges in an open, expanding (or

contracting) system that has an explicit arrow of time.
Consequently, the SEE does not conserve entropy and does
not, in general, describe a dissipationless phenomenon
contrary to the chiral anomalous transport effects (2) and
(3). The power P ¼ hjiscale · E ¼ σE2 dissipated by the
anomalous electric current (32) per unit volume may take
both positive and negative values because the anomalous
conductivity (30) may be both a positive and negative
quantity, respectively. As a result, in this open system the
scale electric effect (32) may not only heat the system but it
may also cool it by absorbing heat. We illustrate the SEE
(32) in Fig. 1.
The anomalous current (28) has also a contribution

coming from the magnetic field B. This part may only
appear due to local spatial inhomogeneities of the scale
factor τðxÞ, which are encoded in the vector quantity F in
Eq. (31). According to Eqs. (28) and (31), in a non-
uniformly stretched static spacetime the scale anomaly
generates the electric current, which is transversal both to
the direction of magnetic field B and to the gradient of the
spatial inhomogeneity F:

hjðt; xÞiscale ¼ FðxÞ × Bðt; xÞ for ∂tτ ¼ 0: ð33Þ

Equations (31) and (33) describe the scale magnetic effect
(SME): the scale anomaly generates the local electric current

in the background of an external magnetic field in a space-
time with a spatially dependent scale factor (Fig. 2).
The electric current generated by the scale magnetic

effect (33) flows without dissipation similarly to the current
(2) generated by the chiral magnetic effect. However, there
are major differences between the SME (33) and the axial-
anomalous transport effects (2): (i) the scale anomaly
generates the electric current via the SME in the vacuum
state while the CME is realized in matter only; (ii) the SME
electric current (33) is transverse to the direction of
magnetic field while in the CME the magnetic field and
the current are parallel to each other.
In the presence of external electric field the scale

anomaly should also lead to concentration of electric
charge (29) at spatial inhomogeneities of the metric (31).
Using a one-loop QED β function for one species of a

Dirac fermion (5), β1-loopQED ðeÞ ¼ e3=ð12π2Þ we get the
anomalous transport coefficients (30) and (31):

σ ¼ −
e2

6π2
∂τ
∂t ; F ¼ e2

6π2
∇τ; ð34Þ

where τðxÞ is the local scale factor of the flat metric (10).
In an expanding geometry with a generic homogeneous

isotropic metric ds2 ¼ dt2 − a2ðtÞdx2 the conductivity of
each species of massless charged fermions gets an anoma-
lous contribution (we restore ℏ and c),

σQEDðtÞ ¼ −
e2HðtÞ
6π2ℏc

; ð35Þ

where HðtÞ ¼ _aðtÞ=aðtÞ is the Hubble parameter. The
derivation of Eq. (35) assumes that the scale factor τ is
small so that the scale factor aðtÞ is close to unity.
Equation (35) implies that inflating the vacuum of

massless fermions should have—due to the scale anomaly
(17)—a nonzero negative conductivity in theories with
positive beta functions, β > 0. This conclusion agrees with
the findings of Refs. [15] and [16], where the electric
conductivity induced by, respectively, fermionic and
bosonic Schwinger effects, was calculated in inflating
(de Sitter) space-time (see also Refs. [17,18]). In particular,

FIG. 1. The scale electric effect: in an inflating (∂tτ > 0)
gravitational background (10) the scale (conformal) anomaly
(17) generates the electric current J along the electric field E
according to Eqs. (32) and (30). The direction of the current
depends on the sign of the β function.

FIG. 2. The scale magnetic effect: in a spatially nonuniform
gravitational background the scale (conformal) anomaly (17)
generates the electric current J circumnavigating the external
magnetic field B according to Eq. (33). The gradient of the scale
factor F is given in Eq. (31).
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in a weak-field limit, jeEj ≪ H2, the leading term in the
fermionic Schwinger effect [15] is 4 times bigger than its
bosonic counterpart [16] in agreement with the relation
β1-loopQED ¼ 4β1-loopsQED between usual and scalar QED beta
functions. [The field theory situation is still somewhat
unclear since fermionic and bosonic conductivities induced
by the Schwinger effect [15,16] contain explicit contribu-
tions from our generic conformal (m ¼ 0) formula (30) up
to a common logarithmic prefactor logðH2=m2Þ. The
existence of this infrared-divergent factor is questioned
for the massless case (m ¼ 0) where the adiabatic regu-
larization of Refs. [15,16] may not be applicable [16] (in an
exactly conformal case no infrared divergences are
expected to arise [19])]. Thus, in the particular case of
homogeneous and isotropic inflation the scale-anomalous
conductivity can be associated with the Schwinger pair
production.
The sign of the Lorentz invariant FμνFμν ∝ B2 − E2

determines whether the electromagnetic background is
magnetically (jBj > jEj) or electrically (jEj > jBj) domi-
nated. In the former (latter) case the pure SME (SEE) is
realized in the reference frame in which the electric
(magnetic) field vanishes. In a general frame both
effects are present, and the induced current is given by
Eqs. (28)–(31). The magnetic field dominance is required
for the existence of a stable vacuum.
Summarizing, we have shown that in theories with

electrically charged massless particles the scale anomaly
leads to new transport effects: the scale electric effect and
the scale magnetic effect given by Eqs. (32) and (33),
respectively. The SEE implies that in inflating geometry the
QED scale anomaly generates electric current (32) flowing
in the opposite direction to the electric field, thus exhibiting
a negative conductivity, Eq. (35). The SME implies that in a
static but spatially inhomogeneous conformal gravitational
background the dissipationless electric current flows trans-
versely both to the magnetic field axis and to the gradient of
the inhomogeneity, Eq. (33). The generated electric cur-
rents are proportional to the appropriate β function. One
can expect that the scale-anomalous transport effects
(28)–(31) are quite generic phenomena because the anoma-
lous term (17)—which is our starting point—is present in
wide varieties of physical models involving fermionic and/
or bosonic degrees of freedom. They may also presumably
be realized in solid state materials possessing relativistic
quasiparticles, such as strained graphene [20] or elastically
deformed Weyl-Dirac semimetals [21].
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