
Simple Emergent Power Spectra from Complex Inflationary Physics

Mafalda Dias,1,* Jonathan Frazer,1,† and M. C. David Marsh2,‡
1Deutsches Elektronen-Synchrotron, DESY, Notkestraße 85, 22607 Hamburg, Germany

2Department of Applied Mathematics and Theoretical Physics, DAMTP, University of Cambridge,
Cambridge, CB3 0WA, United Kingdom

(Received 4 August 2016; published 30 September 2016)

We construct ensembles of random scalar potentials for Nf-interacting scalar fields using non-
equilibrium random matrix theory, and use these to study the generation of observables during small-
field inflation. For Nf ¼ OðfewÞ, these heavily featured scalar potentials give rise to power spectra that are
highly nonlinear, at odds with observations. For Nf ≫ 1, the superhorizon evolution of the perturbations is
generically substantial, yet the power spectra simplify considerably and become more predictive, with most
realizations being well approximated by a linear power spectrum. This provides proof of principle that
complex inflationary physics can give rise to simple emergent power spectra. We explain how these results
can be understood in terms of large Nf universality of random matrix theory.
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According to the cosmological paradigm of inflation
[1–3], the structure of the observed Universe emerged from
the gravitational collapse of small, primordial density
perturbations, which in turn originated as quantum fluctua-
tions during a period of accelerated expansion. The cos-
mological parameters inferred from observations of the
cosmic microwave background radiation (CMB) are in
striking agreement with the predictions of many of the
simplest models of single-field slow-roll inflation [4]: at the
present accuracy of cosmological surveys, the spectrum of
adiabatic curvature perturbations is Gaussian and almost
scale invariant and can thus be described with just two
numbers—the amplitude of the power spectrum As and its
tilt ns. Should then the simplicity of the observed CMB
perturbations be interpreted as evidence for a minimal and
simple microscopic origin of inflation in fundamental
theory?
Attempts at embedding inflation in string theory have

revealed that even ostensibly simple inflationary models
require delicate arrangements of the various sources of the
scalar potential, which in general is a complicated function
of a large number of scalar “moduli” fields [5]. More
general inflationary models may involve many dynamically
important fields with complicated interactions; however,
the explicit construction of such models is very challeng-
ing, and not much is known about the observational
predictions of complex many-field models of inflation.
In this Letter we address this question, and provide proof

of principle that a complex many-field inflationary model
can give rise to simple power spectra. By computing the
power spectra of inflationary models with highly featured,
randomly generated scalar potentials of between 2 and 50
scalar fields, we find that systems with a large number of
fields generate simpler and far less featured power spectra
during inflation. We interpret this result using random

matrix theory (RMT), finding that in systems with many
fields, eigenvalue repulsion makes the power spectra both
more predictive and better approximated by a linear power
law. RMT universality then suggests that these results
should be applicable well beyond the class of random
inflationary models that we study explicitly [6].
The model.—To study the impact of complexity on

observables, we construct ensembles of randomly gener-
ated scalar potentials suitable for inflation using the method
presented in Ref. [12]. By constructing each scalar potential
locally around the field trajectory, the computational cost
(which for complicated, globally constructed potentials
quickly becomes prohibitive [10,13]) is minimized, thus
enabling us to study inflation in potentials with structure on
scales≪ MPl for a large number of fields. We will consider
statistically isotropic systems, and stipulate that the col-
lection of Hessian matrices associated with a set of well-
separated points in field space constitute a random sample
of the Gaussian orthogonal ensemble (GOE). According
to Ref. [12] (see also Ref. [14]), such potentials can be
constructed using the nonequilibrium RMT technique of
Dyson Brownian motion (DBM) [15].
More precisely, for a field located at a point p0 in field

space, wewrite the potential locally as a Taylor expansion to
quadratic order by specifying the value of the potentialVjp0

,
its gradient ∂aVjp0

, and the Hessian matrix ∂2
abVjp0

. We
choose these initial conditions to be favorable for inflation;
in particular, we focus on the rare regions in which the
potential is locally very flat, and we set the initial field space
velocity _ϕajp0

to be suitable for slow-roll inflation. Thus,
close to p0 the potential is well approximated by

Vjp0
¼ Λ4

v

ffiffiffiffiffiffi
Nf

p �
v0jp0

þ vajp0

~ϕa þ 1

2
vabjp0

~ϕa ~ϕb
�
; ð1Þ
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where Λv defines the “vertical” scale of the potential, and
~ϕa ≡ ϕa=Λh are dimensionless fields with Λh setting the
scale over which the potential exhibits structure. The overall
factor of

ffiffiffiffiffiffi
Nf

p
is explained in Ref. [12].

We then numerically solve the dynamical equations of
motion of this system over a path length δs ≪ Λh to the
point p1, at which point we update the coefficients of
the Taylor expansion to find the new local description
of the potential. To linear order in Taylor expansion we
then find the scalar potential and gradient at p1 to be given
by v0jp1

¼ v0jp0
þ vajp0

δsa=Λh, and vajp1
¼ vajp0

þ
vabjp0

δsb=Λh, while

vabjp1
¼ vabjp0

þ δvabjp0→p1
; ð2Þ

where δvab is a small, stochastic matrix perturbation
obtained by Dyson Brownian motion [15]. The first two
moments of δvab are given by

hδvabjp0→p1
i ¼ −vabjp0

δs
Λh

; ð3Þ

hðδvabjp0→p1
Þ2i ¼ ð1þ δabÞ

δs
Λh

σ2; ð4Þ

where δs ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
δsaδsa

p
and σ2 sets the variance of the

distribution (we take σ2 ¼ 2=Nf so that for Nf ≫ 1, the
spectrum of vab is Nf independent). Having found
the values of the scalar potential, gradient, Hessian and
field space velocity at p1, we may reiterate the procedure
and evolve the system to another nearby point p2. This way
we stitch together the random scalar potential patch by
patch along the dynamically determined field trajectory. As
the field evolves to a distance s away from the initial point
p0, due to eigenvalue repulsion (cf. Fig. 3 of Ref. [12]) the
Hessian matrix relaxes from a rare fluctuated spectrum,
suitable for inflation, towards the Wigner distribution
which is the typical spectrum of the GOE [15,16]. We
terminate the iterative process once inflation ends, defined
to be when the slow-roll parameter ϵ≡ − _H=H2 ¼ 1. This
construction is applicable to both small-field s < MPl and
large-field s > MPl inflation, but in this Letter we will only
study the s < MPl regime. The construction does not
require an underlying shift symmetry and hence the method
seems particularly well suited to the study of small-field
inflation.
Method.—Computing PζðkÞ.—Computing perturbations

for large Nf models is in general a numerically heavy task,
as it involves an integration from deep inside the horizon up
until the end of inflation. The main computational expense
comes from the fact that in order to obtain the two-point
function of the curvature perturbation ζ one is required to
solve OðN2

fÞ coupled ordinary differential equations [17].
Furthermore, this system of equations has an explicit k
dependence, meaning that the full power spectrum of ζ,

PζðkÞ, can only be obtained by calculating the amplitude
for each mode individually.
Here, we use the patchwork construction of the DBM

potential to find striking simplifications for slow-roll
multifield inflation, enabling us to bypass these problems.
The key step is to rotate the field basis independently
for each patch to the local eigenmodes φa of the Hessian.
The great advantage in doing so is that the potential in each
patch is then (locally) sum separable Vðφ1;…;φNfÞ ¼PNf

a VaðφaÞ. In this case, the field perturbations in a
spatially flat gauge evolve like

δφajpiþ1
¼ Γa

bðpiþ1; piÞδφbjpi
; ð5Þ

where, assuming the slow-roll equations of motion are
valid, the propagator Γa

bðpiþ1; piÞ can be expressed purely
in terms of background quantities [25], thus providing an
analytic solution to the propagation of the perturbation over
each patch.
The full evolution of the field perturbations until the

end of inflation at the point pf is then simply given by
the path-ordered product of propagators and orthogonal
transformations

δ~ϕjpf
¼ OT

pf
Γðpf; pf−1ÞOpf

…OT
p1
Γðp1; p0ÞOp1

δ~ϕjp0

≡ Γðpf; p0Þδ~ϕjp0
: ð6Þ

The curvature perturbation at the constant density surface ζ
is then obtained by a standard gauge transformation in the
final patch

ζ ¼ Naδϕ
ajpf

; ð7Þ
where Na ≡ ∂N=∂ϕajpf

. It follows that the two point
function,

hδϕaðk1Þδϕbðk2Þi ¼ ð2πÞ3δðk1 þ k2Þ
Σab

k3
; ð8Þ

evolves according to two copies of the propagator [18].
Hence, the power spectrum may be expressed as

PζðNÞ ¼ NaNbΓa
cΓb

dΣcdðN�Þ; ð9Þ
where we assume the field perturbations crossing the
horizon at time N� are uncorrelated

ΣabðN�Þ ¼
H2�
2

δab; ð10Þ

an approximation we find to be in excellent agreement
with our numerical tests. With this method, the two-point
correlation function can be computed purely from infor-
mation already obtained in the process of constructing
the potential and it is trivial to obtain the full spectrum
PζðkÞ. This method will be described in full detail in
Ref. [28].
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The spectral index ns and its running αs,

ns − 1≡ d lnPζ

d ln k
; αs ≡ dns

d ln k
; ð11Þ

can likewise be expressed in terms of the propagator Γa
b.

Combining results from Refs. [18,29], the spectral index is
given by

ns − 1 ¼ 1

Pζ
NaNbΓa

cΓb
dn

cd� ; ð12Þ

where

nab� ≡ dΣ
d ln k

����
�
¼ ð−ϵδab − uabÞ�H2�; ð13Þ

and the matrix uab ¼ ∂2
ab lnV. Similarly, the running takes

the form [30]

αs ¼
1

Pζ
NaNbΓa

cΓb
dα

cd� − ðns − 1Þ2; ð14Þ

where

αab� ≡ dnab

d ln k

����
�

¼ ½ð2ϵ2 − ϵ0Þδab − u0ab þ 2ϵuab��H2� − 2½uacncb��;
ð15Þ

and primes indicate differentiation with respect to e-fold
time N.
Numerical procedure.—We are now ready to compute

the spectrum of the curvature perturbation generated during
inflation in random multifield models constructed through
Dyson Brownian motion. The potential (1) has a number
of parameters: the number of fields Nf, the vertical and
horizontal scales, Λv and Λh, and the initial conditions for
the potential v0jp0

, vajp0
, and vabjp0

. In this work we focus
solely on effects emerging from large Nf behavior, leaving
a more exhaustive study of the full parameter space to
future work [28].
For the remaining parameters we take v0jp0

¼ 1, and
chose vajp0

to set the initial value of the ϵ slow-roll
parameter. The initial spectrum of vabjp0

is chosen to be
that of a fluctuated Wigner spectrum [31] with an approx-
imately vanishing smallest eigenvalue, taking the eigen-
vector of the smallest eigenvalue of vabjp0

to be aligned
with vajp0

. We note that eigenvalue repulsion quickly
modifies the initial spectrum during Dyson Brownian
motion, leading to mass spectra with features on scales
≪ Λh, and an insensitivity to the details of the initial
distribution of vab [12]. The models we consider are
then of small-field “approximate saddle-point”-type with
Λh < MPl.

Finally, for random potentials that give rise to at least
60 e-folds of inflation, we compute PζðkÞ for the scales
leaving the horizon between 50 and 60 e-folds before the
end of inflation; assuming it is approximately this 10
e-fold range which is constrained by observations of the
CMB. The vertical scale, Λv, is chosen to set the amplitude
of the power spectrum of the mode k0 exiting the horizon
55 e-folds before the end of inflation to agree with the
COBE normalization [32].
Result.—Figure 1 summarizes our main result. Displayed

are the power spectra of a random selection of 25 infla-
tionary realizations for Nf ¼ 2 and Nf ¼ 50, with all other
parameters fixed. When the number of fields is small (top),
the power spectra vary dramatically between realizations
and are typically highly nonlinear [33]. In contrast, when
many fields are active during inflation (bottom), the
spectra become much simpler and can generically be
well described by a linear fit. Moreover, at large Nf the
distribution of the spectra also becomes less varied and
more predictive, with sharper distributions for the spectral
index and its running. In fact, for sufficiently large Λh, the
spectra generated during inflation become consistently too
red to match observational constraints.
The emergent simplicity at large Nf does not, however,

imply that this limit corresponds to an effectively single
field regime. Figure 2 shows the evolution of Pζðk0Þ and
nsðk0Þ on superhorizon scales for the same Nf ¼ 50

FIG. 1. Example power spectra for the scales leaving the
horizon between 50 and 60 e-folds before the end of inflation
for Nf ¼ 2 (top) and Nf ¼ 50 (bottom), with Λh ¼ 0.4.
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realizations shown in Fig. 1. We find the amount of
superhorizon evolution to always be substantial, often
changing the amplitude of the spectrum by several orders
of magnitude. As superhorizon evolution of ζ occurs due
to the transfer of power from isocurvature to adiabatic
perturbations, this is a direct indication of multifield
dynamics. Conversely, for Nf ¼ 2 the evolution of
Pζðk0Þ on superhorizon scales is, up to numerical accuracy,
zero (hence, no plots are shown).
All inflationary realizations considered here are of small-

field type with typical path length ∥Δϕ∥ ∼ 0.7Λh, immedi-
ately implying a small value for the tensor-to-scalar ratio, r,
according to the Lyth bound, r≲ 0.01ð∥Δϕ∥=MPlÞ2 [34].
Moreover, due to the sharp increase of ϵ during this type of
approximate saddle-point inflation and, for large Nf, the
superhorizon transfer of power into the scalar perturbations,
this bound is far from saturated: for Nf ¼ 2, r ≈ 10−7 and
for Nf ¼ 50, r ≈ 10−10. The respective typical values ofH�
are ∼1011 and ∼109 GeV.
Discussion.—Strikingly, our simulations of random and

complicated inflationary models show that at large Nf

the ensemble of inflationary realizations become more
predictive, and the generated power spectra become
approximately linear. We now explain how these effects
can be understood in terms of random matrix theory.
Improved predictability at largeNf.—Thevariance of the

spectral index for an ensemble of random potentials is a

measure of the predictability of the model. As mentioned, all
our inflationary realizations are of small-field type and have
very small ϵ at horizon crossing. In particular, terms in
Eq. (12) proportional to ϵ� and gradients ∂aV� are subdomi-
nant and the overall expression simplifies considerably,

ns − 1 ≈ 2eaeb

�
vab

v0Λ2
h

�

�
: ð16Þ

Here, the unit vector ea ≡ NbΓb
a=∥NcΓc

d∥ evolves through-
out inflation, but tends to primarily develop non-negligible
components in the directions of the first few smallest
eigenvalues of vabj�, which then dominate the contributions
to ns. The variances of the smallest few eigenvalues of vabj�,
and, in particular, that of the smallest eigenvalue λ1, are then
the main contributions to the variance of the spectral
index. Sufficiently close to the initial patch, we can estimate
the first two moments of λ1 as follows: at the kth patch,
vkab ¼ v0ab þ

P
k
l¼1 δv

l
ab, so that to second order perturbation

theory

λk1 ¼ vk11 −
XNf

b0¼2

cb0 jvk1b0 j2; ð17Þ

where cb0 ¼ jλ01 − λ0b0 j−1. Computing the first two moments
of λk1 and then taking the continuum limit (k → ∞, s fixed),

we find hλ1ðsÞi ¼ e−sλ01 − sσ2
PNf

b0¼2
cb0 , and

Var(λ1ðsÞ) ¼ 2sσ2
�
1þ sσ2

XNf

b0¼2

c2b0

�
: ð18Þ

Thus, eigenvalue repulsion drives the mean of the smallest
eigenvalue to negative values, explaining the preference for
red spectra. For fixed, small s the overall prefactor of Eq. (18)
decreases as σ2 ∼ 1=Nf, indicating a shrinking variancewith
increasing Nf, and hence an increased predictivity of the
model, in agreementwith numerical simulations. The second
term of Eq. (18) grows withNf and, hence, indicates that the
second order perturbation theory quickly becomes insuffi-
cient for very large systems: the actual probability distribu-
tion of the smallest eigenvalue becomes sharper at large Nf

due to strong eigenvalue repulsion.
Smoother spectra at large Nf.—Eigenvalue repulsion

also explains the smoothening of the power spectra at large
Nf: when Nf is small, the smallest eigenvalue undergoes
Brownian motion with a high volatility, while for large Nf

large fluctuations become increasingly rare, in agreement
with our discussion of Eq. (18). Hence, the running αs,
which is a measure of deviation from linearity, decreases
with Nf, as we now show. Since our realizations are always
of the small-field type, Eq. (14) is well approximated by

αs≈4eaeb
vacvcb

v20Λ
4
h

����
�
−4

�
eaebvab�
v0�Λ2

h

�
2

þ2eaeb
vab0

v0Λ2
h

����
�
: ð19Þ

FIG. 2. Superhorizon evolution of Pζ (top) and ns (bottom) for
the k0 mode, which leaves the horizon 55 e-folds before the end
of inflation, for the examples with Nf ¼ 50 of Fig. 1. The power
spectra are normalised to their horizon exit value. N ¼ −55
corresponds to the horizon exit time and N ¼ 0 to the end of
inflation.

PRL 117, 141303 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 SEPTEMBER 2016

141303-4



Following the same line of argument as above, for a
qualitative estimate of the behavior of αs, we assume ~e
to be roughly aligned with the most tachyonic direction. In
that case, the first two terms of Eq. (19) approximately
cancel and the last term, which is effectively the rate of
change of the smallest eigenvalue of vab, dominates.
Hence, we attribute the radical decrease of αs to the
decrease in volatility of the smallest eigenvalue at large
Nf. For large Nf the running falls within the range allowed
by current Planck data.
Final remarks.—We have for the first time shown that

small-field inflationary models with many fields coupled
through random, highly featured potentials are capable of
generating simple power spectra that can be compatible
with observations. Large Nf random matrix theory pro-
vides an intuitive explanation for the observed effects: both
the smoothness and the enhanced predictivity of the spectra
are a simple consequence of eigenvalue repulsion, which
becomes strong as Nf grows large. A more detailed
treatment of observational signatures, including a study
of the superhorizon evolution of the isocurvature modes
and the possible signals in the bispectrum and trispectrum
remain open questions that we intend to address in
future work.
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