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The indeterminacy inherent in quantum measurements is an outstanding character of quantum theory,
which manifests itself typically in the uncertainty principle. In the last decade, several universally valid
forms of error-disturbance uncertainty relations were derived for completely general quantum measure-
ments for arbitrary states. Subsequently, Branciard established a form that is optimal for spin measurements
for some pure states. However, the bound in his inequality is not stringent for mixed states. One of the
present authors recently derived a new bound tight in the corresponding mixed state case. Here, a neutron-
optical experiment is carried out to investigate this new relation: it is tested whether error and disturbance of
quantum measurements disappear or persist in mixing up the measured ensemble. The attainability of the
new bound is experimentally observed, falsifying the tightness of Branciard’s bound for mixed spin states.
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Quantum measurement, through which a value of a
physical property is assigned, has always eluded our
consistent, physical understanding [1]. The uncertainty
principle proposed by Heisenberg [2] in 1927 states that
it is impossible to measure two conjugate observables with
arbitrary precision. Exemplary for a preparation uncer-
tainty, Kennard [3] proved the inequality AgAp > #/2 for
standard deviations Ag and Ap for position ¢ and
momentum p. Robertson generalized this relation to an
arbitrary pair of noncommuting observables A, B for a
given quantum state |y) replacing the lower limit /2 by
the bound C,p=4|(w|[A.B]lw)| [4]. Heisenberg’s initial
idea of an uncertainty for successive measurements,
referred to as error-disturbance uncertainty relation
(EDUR), is, however, not captured by Kennard’s relation.
A generally valid formulation of EDUR was given only
much more recently by Ozawa [5,6] as

€(A)n(B) + e(A)AB + n(B)AA > Cyp. (1)

The error ¢(A) for measuring an observable A and the
disturbance 5(B) caused on an observable B are defined in
Ref. [5] as

(AP =Tr(U' (1@ MU -A® 1)’ ® |5) (],
n(B)* =Tr[(U'(B® 1)U -B ®1)°p ® [¢)(&]]- )

The relations in Eq. (2) characterize how the input state p of
the object system is processed in an apparatus, described by
an indirect measurement model with parameters |£), U, and
M. Here |€) is the apparatus’s initial state, U is the unitary
operator describing the interaction between object and
apparatus system, and M is the meter observable of the
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apparatus [6]. To put it more comprehensively, the error
€(A) quantifies the deviation between the intended meas-
urement and the measurement actually performed in the
apparatus. In the same manner the disturbance 7(B)
describes how accurate the value of the observable B
can be determined after the approximative A measurement
was carried out.

In pursuit of an improvement of relation (1), a stronger
inequality

€(A)*AB? + n(B)?AA?

+2e(A)n(B)\/AA’AB? — C%, > C3p (3)

was introduced by Branciard [7]. The validity of both
relations were experimentally tested with neutrons [§—10]
and photons [11-14] solely in case of pure states. Other
approaches to measuremental uncertainty relations can be
found for example in Refs. [15-19].

Our studies are not limited to measurements of physical
quantities on a pure single quantum system [20], but are
rather concerned with statistical ensembles of a quantum
system reflecting actual circumstances. All information of
physical importance is, thus, attributed to a statistical state,
represented by a so-called density matrix [21]. There is no
uniqueness of the representation of a mixed state as a
convex sum of pure states [22]; i.e., the same mixed-state
density matrix can be obtained with different blends for that
[23,24]; experiments can distinguish the difference in
mixture but no evidence can be found in different gen-
eration methods of the mixture. All as-if realities consisting
in blending are not accessible, turning to be virtual [24].
Nevertheless, (phase) mixture occurring due to dephasing
in double-slit experiments can easily wash out interference
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FIG. 1.

Tllustration of the experimental setup. The neutron polarimeter setup consists of three stages. (i) Preparation (blue region): a

monochromatic neutron beam is polarized in the 4z direction by passing through a supermirror spin polarizer. In the coil (DC-1) the
directions and mixture of the input states are adjusted. (ii) Apparatus M 1, consisting of a projective O, measurement (pink region) and a
correction operation (light green region): the first measurement is carried out by analyzer 1 together with the coils (DC-3/4) followed by
a unitary rotation of the output state of the O, measurement. (iii) Apparatus M2, measuring B (dark green region): the second
measurement carried out by the coil (DC-4) together with the analyzer 2 is fixed to make a B measurement. Transparent coils are virtual,

in practice other dc coils fulfill their tasks.

fringes; i.e., quantum interference vanishes for mixed states
and quasiclassical behavior can emerge in certain circum-
stances [25,26].

An extension of the Robertson bound C, 5 in the EDURs
to Cyp = 1|Tr([A, B]p)| is not stringent for mixed states
and entails a disappearance of uncertainty for totally mixed
ensembles represented by p [27]. Improvement of the
bound was put forward by Ozawa [28] who showed that
C,p in Eq. (3) can be replaced by a stronger quantity D,p
defined as D5 = 3 Tr(|\/p[A. B]/p|). This new parameter
coincides with the Robertson bound C,z when p is a pure
state, but makes the EDUR in the form of Eq. (3) stronger
for a mixed ensemble. This new relation is experimentally
tested here for the first time. Our experiments study
whether the uncertainty vanishes or remains for mixed
states, illuminating its residual character.

The considerations so far are all valid for a general,
arbitrary pair of noncommuting observables. As the sim-
plest case, spin-¥2 observables, represented by a set of Pauli
operators, have been a major focus of investigations of
EDURs. Branciard [7] showed that for binary measure-
ments with A2 = B> =1 and (A) = (B) = 0, where (- )
stands for the expectation value in the system state, Eq. (3)
can be strengthened to a stronger EDUR. Ozawa demon-
strated that replacement of the bound C',; by D,p [28]
improves the inequality in the binary case as well.

We investigate projective spin measurements where
Eq. (2) can be simplified to operator biases

e(A)? = ((04 = A)?),
n(B)> = ((Op — B)?), 4)

between the observables actually measured O, [Og] and
the observables intended to be measured A [B]. The output
observables are linked to the decomposed meter observable
M, = |A =m)(0O, = m| of the measurement apparatus,

where m can have the outcome +1,by O, = >, mM Ian

and O%k) =Y, M},B*M,,. In our experiments we choose
A =o0,, B =0, and consider a mixed ensemble p satisfy-
ing (A) = (B) = 0; then, p is generally parametrized as
pr(a) =1 (1+ac,). In this case, the bound Dyp =1 is
constant and yields the tight relation [28]

for any p, () independent of the mixture of the state, while
the bound C’,,; does depend on the parameter .

We carried out a neutron polarimeter experiment at the
250 kW TRIGA Mark-II research reactor at TU Wien,
Austria, as depicted in Fig. 1. The incident neutrons with a
wavelength 1 = 2.02 A, are polarized by a spin-dependent
reflection on a multilayer structure, referred to as super-
mirror. A guide field between polarizer and analyzer 1 and
between analyzer 1 and analyzer 2 in the +z direction is
applied and determines the quantization axis. Based on the
previous performance of the studies of the EDUR for pure
states [8—10], we extend here the investigation by applying
two procedures, i.e., the generation of mixed states and
modification of the first measurement process in apparatus
(M1) by unitary transforming the output states. The former
allows the study of the EDUR for mixed states and the latter
enables us to tune the disturbance.
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The polarimeter setup consists of three stages: (i) state
preparation, (ii) apparatus M1 performing a projective Oy
measurement plus the correction procedure and (iii) appa-
ratus M2 performing the B measurement. Larmor preces-
sion induced by magnetic fields B, in the dc coils allows us
to orient all required directions of the spin measurements.
The mixing of the state can be tuned by a noise magnetic
field B,y [29]. In practice, we realize /2 rotations with
noisy fields by one dc coil (DC-1), where the required
mixture can be adjusted by the amplitude of the noise
signal.

In the first stage, the input states are chosen to be
pr(a) =1(1+ ac,). The case a =1 corresponds to the
pure input state |x), whereas a = 0 yields a completely
mixed ensemble. For the entire experiment five different
mixtures @ = {1,0.75,0.5,0.25,0} were realized by tun-
ing the strength of the noisy magnetic field. The orientation
and degree of mixture of the input states were verified by
measuring the expectation values of the Pauli-spin oper-
ators Tr(o;p,) for i = x, y, z each. Typical state fidelity

F =Tr(y/\/ppx"\/px) of the pure input state p, was
0.982(5). We applied the so-called “three-state-method”
[6]. Two additional states to the original input state p,(a)
are generated and sent to the apparatus: in practice, ancilla
states are set as p,(—a) [= Ap,(a)A] and A’s eigenstate
| +2) (= A| + 2)) {p(—a)[= Bp,(a)B] and B’s eigenstate
| +y) (=B|+y))} to determine the error (disturbance)
(see the Supplemental Material for more details on this).

The second stage represents the apparatus M1 in which
the coils dc-2/3 plus analyzer 1 carry out projective
measurement of the observable O, = cos(fp,)o. +
sin(@p4)o, for all input states. The parameter €y, is the
detuning angle of this measurement. For 6,4, = 0 the
observable O, is identical to A for which the error is
expected to vanish, while for 6,, = 7/2, the observable
O, equals B where the disturbance is supposed to be the
smallest. After the measurement the neutron leaves the
apparatus in the eigenstates |O4 = +1) of the first
measurement.

In the correction stage, we investigate the influence of an
unitary transformation U™ on the output state |04 = 1),
which rotates the state just after measurement in M1 and
before the second one. Thereby, one can realize an optimal
(and anti-optimal) correction by adjusting U°™. Note that
in our previous study [8—10] the unitary operation U™ is
not applied and fixed as U®°" = 1 in practice. The last stage
consists of the measurement of B =0, in the state
U0, = £1) in apparatus M2 which is accomplished
again by a dc coil (DC-4) plus analyzer (analyzer 2)
combination. Results of the second measurement are
expected to be affected both by the disturbance at the first
measurement and the intermediate unitary transformation
U*°". Note that a spin rotation after the apparatus M2 is not
applied, since it has no influence on the detected count

disturbance 7

FIG. 2. Influence of the correction procedure on the disturb-
ance. After the projective measurement of O4(6p4 = 57/18)
plus unitary rotations U™ [with angle parameters (9, ¢) for the
output state of the apparatus M1], the measurement of B = o, is
performed in apparatus M2. The angles identify the output
states [ (9, ¢)) = (cos(8/2), € sin(8/2))" and |-y (9, ¢)) =
|y(m — 9, ¢+ x)) of the unitary operation. Blue and red arrow
indicate the position of the minimal (z/2,37/2) and maximal
(w/2,m/2) disturbance.

rates. The entire sequence of the successive projective
measurements is given by

pi(a)
pe(=a) 5|04 = 1) om0, = £1)
12), 1)

Y10, = £1,05 = £1).

Our first study examines the influence of the unitary
transformation in apparatus (M1). First, pure input states
are generated and the detuning angle 6,, is fixed at
S5z/18. Then, the eigenstate of O, after apparatus M1 is
unitarily transformed to the state |y(9, ¢)) = (cos(9/2),
e'?sin(9/2))T = U0, (57/18)). The measured dis-
turbance as a function of the polar and azimuthal angle
(9,¢) is plotted in Fig. 2. This plot clearly exhibits the
decrease and increase of disturbance by the choice of 9 and
¢. It is apparent that the minimal and maximal disturb-
ances, illustrated by blue and red arrows in Fig. 2, are
achieved when the output state after measurement in (M1)
is unitarily transformed by U™ into eigenstates of the
observable B = 6. (see Supplemental Material [30] for
theoretical details of the correction or anticorrection
procedure).

After determination of the disturbance-minimizing or
-maximizing unitary transformations, the EDUR given by
Eq. (5) is analyzed. The experimentally determined error
versus maximum and minimum disturbances are plotted in
Fig. 3 for pure states together with the theoretically
predicted bound. The red shaded area marks the forbidden
region. The lower and upper bound was measured for angle
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errors are seen in the plot for small values than for large
€(A), n(B) values: this is due to the nonlinearity, i.e., larger
slope of the square-root function for smaller values [see
definitions of error and disturbance in Eq. (4)] and due to
the propagation of statistical uncertainty. All error intervals
represent 1o of confidence level.

Finally, the influence of the mixture of the input states is
studied, by applying the optimal correction procedure for
minimal disturbances and tuning the mixture of
px(@) =% (1 + ac,). The results are plotted in Fig. 4.
Each plot exhibits optimal EDUR for a particular mixture
with theoretical predictions by D,p and C),. It can
immediately be seen that the error-disturbance uncertainty
is insensitive to dephasing or amplitude damping of the
input states caused by the fluctuating magnetic field and

0.0 0.5 1.0 V2 20 that the bound is preserved. The measured values always

error €(A) saturate inequality Eq. (5); for mixed spin states no

dependence on the mixture appears. Only the bound given

FIG. 3. Error-disturbance uncertainty relation as indicated by by D, leads to saturation of the error-disturbance uncer-
inequality Eq. (5) measured with pure states: not only the lower tainty relation. This statement is also true for different
but also upper bounds of the disturbance are found. For a configurations of the observables A and B. In the

dff“;“:\“f angle Ofl.gﬁA - 0 the Aouq)l;t Ob_sergal\)}% 01*:‘ C(.)mmdes Supplemental Material [30] results for other choices of
with A = &, at which point (¢(A),n(B)) = (0,+/2). For increas- observable B are depicted.

ing angles 6,4 the error increases as well and disturbance spreads . .
. - : The successive nature of the measurement made it

between the maximum and minimum values. The extremal points . . . B
obvious how the correction procedure, i.e., a unitary

are reached at 6, = 7/2, at which O, equals B. For angles from
/2 to z the EDUR evolves back. Blue and red arrows indicate  transformation, can be incorporated to the whole measure-
the points denoted to the maximal and minimal disturbance in ment. Disturbance is strongly affected by this correction
Fig. 2. and we have observed the maximum and the minimum

disturbance by optimal and anti-optimal corrections. Our

experiment successfully demonstrates the tightness of the
Ooa = [0, 7] with a step of z/18. For 0y, =0 we have  bound D,z and the nontightness of the simply extended
€(A) = 0 at which point the disturbance is unique. When  Robertson bound C’,;. We confirmed the independence of
0o = n/2 (O4 = B), the disturbance reaches its (maxi-  the EDUR on the mixture of the states for the case of
mum) minimum value, depending on the unitary (anti-)  dichotomic observables A, B with (A) = (B) = 0. This is
optimal correction transformation. When 6o, =7, Oy, =  considered to be due to the fact that the observed uncer-
—A the error is maximal and disturbance is independent of  tainty for Pauli operators is originated more in observables
the transformation once again. Note that larger statistical ~ than in input states: this reminds us of another state

S
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FIG. 4. Error e(A) versus disturbance #(B) for the standard configuration (A = o, B = ¢,) with four different mixtures of the state
pela) = %(1] + aoc,): (a) a =0.75, (b) a = 0.5, (c) a = 0.25, and (d) a = 0. The red shaded areas are forbidden according to Eq. (5).
The border indicates the theoretical prediction of the lower bound D, = 1 which is saturated by our data points. The behavior of the
bound C/,, is indicated by the colored dashed lines. A change of the mixture parameter a has no effect on the final error-disturbance
relation in the standard configuration as initially predicted by the expectation value C/; .
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independence appearing in quantum contextuality, which
was confirmed in an ion experiment [31]. Since quantum
states, practically used in application such as quantum
communication and computation, are more mixed ensem-
ble due to (unavoidable) dephasing and decoherence than
in a laboratory, our study shed a light on the new aspects of
quantum measurements available for practical applications.
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