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Highly optimized complex transport networks serve crucial functions in many man-made and natural
systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is
nonconvex and characterized by many local extrema. In general, finding the global, or nearly global
optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved
through natural selection. However, general coarse grained models for flow networks with local positive
feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. In this work
we show how the growth of the underlying tissue, coupled to the dynamical equations for network
development, can drive the system to a dramatically improved optimal state. This general model provides a
surprisingly simple explanation for the appearance of highly optimized transport networks in biology such
as leaf and animal vasculature.
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Complex life requires distribution networks: veins and
arteries in animals, xylem and phloem in plants, and even
fungal mycelia that deliver nutrients and collect the by-
products of metabolism. Efficient function of these distri-
bution networks is crucial for an organism’s fitness. Thus,
biological transport networks are thought to have undergone
a process of gradual optimization through evolution [1],
culminating in organizational principles such as Murray’s
law [2–4]. A particular class of such networks thatminimizes
flow resistance under biologically relevant constraints has
been studied to reveal a wealth of phenomena such as phase
transitions [5,6], the interdependence of flow and conduit
geometry [7], and predictions about allometric scaling
relations in biology [8]. When the optimization models
are generalized to require resilience to damage or to consider
fluctuations in the load, optimal networks reproduce the
reticulate network patterns observed in biological systems
[9,10]. The optimality principles that often determine these
networks also appear in nonbiological context, e.g., river
basins [11,12], and are relevant for man-made systems such
as gas or sewage pipe networks [13,14].
The overall structure of biological distribution networks

is to a large extent genetically determined. However, the
networks are typically composedof thousands of vessels, and
genetic information cannot encode the position and diameter
of each individual link [15]. Instead, development relies on
local feedback mechanisms where increased flow through a
vascular segment will result in improved conductivity of the
vessel. For example, in plant leaves, an adaptive feedback
mechanism involving the phytohormone auxin, termed
“canalization,” is believed to guide morphogenesis of the
venation pattern [16–18]. Beyond development, such adap-
tive mechanisms allow organisms to modify the network
structure and respond to changing environmental cues. In
slimemolds, adaptation to flow of nutrients leads to efficient

long-range transport [19–21]. In animal vasculature, both
development and adaptation in the adult organism are
actuated by a response to vein wall shear stress [22–26].
Finding the topology that optimizes flow, i.e., one

that dissipates less power than others, is frequently not
trivial because the objective function is often nonlinear and
nonconvex, leading to a plethora of local optima [6]. These
local optima may perform significantly worse than the
global optimum.
Networks that follow simple adaptive rules have been

shown to lead to steady states that are local optima of relevant
objective functions [12,27]. These states often lack structure,
whereas real vasculature typically exhibits a large degree of
highly symmetric hierarchical organization that can only be
reproduced in models by employing global nonlinear opti-
mization techniques such as Monte Carlo algorithms [6] or
simulated annealing [10]. Given the evolutionary pressures
for ever improved vascular networks, an important question
is how an organism is able to construct a highly optimal
transport system, i.e., one that is close to the global optimum
of the relevant functional, via local adaptive rules without
recourse to direct genetic encoding of the whole pattern.
In this Letter, we show that network adaptation on a

growing substrate can serve as a simple, physical explanation
of the globally optimized networks found in Nature. We
note that the importance of growth in adaptive processes has
been emphasized before in other contexts [28–30]. Inspired
by adaptive models of vascular development in plants [31]
and animals [26], we derive a set of coarse-grained dynami-
cal equations that include scaling effects due to growth of,
e.g., the leaf blade of dicotyledonous plants or the animal
embryo. Notably, the rules we derive from growth can be
interpreted as a time-dependent increase in perfusion alone
(e.g., in wound healing), such that growth may not be strictly
necessary [Figs. 1(d)–(f)]. Growth manifests as local,
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deterministic terms in the dynamical equations, such that
neither global exchange of information nor stochastic explo-
ration of the energy landscape is necessary to produce a
globally optimized pattern. In addition, the pattern is shown
to be independent of initial conditions for a large part of
parameter space such that no preencoded pattern is necessary
to guide development. Through growth, global optimization
emerges from local dynamics.
In what follows, we consider a two-dimensional continu-

ous growing sheet of tissue in which the network adapts.
The results can be trivially generalized to three dimensions
by modifying the scaling exponents. This sheet may
represent the leaf primordium or the surface of an organ
such as the retina (Fig. 1). For simplicity, growth is taken
to be isotropic and uniform such that the distance between
two reference points evolves in time as dðtÞ ¼ λtdð0Þ, with
the time-dependent scaling factor λt. Correspondingly, areas
scale as AðtÞ ¼ λ2t Að0Þ. Without loss of generality, we take
all dynamical quantities xðtÞ to scale with growth as
xðtÞ ¼ λσt x0ðtÞ for some x-dependent exponent σ. We model
no backreaction of the network on the growth process.
At the start of the adaptation process, we partition the

sheet, e.g., with a lattice or a Voronoi tessellation. Over

the whole growth process, this partitioning will remain
topologically fixed, providing a “comoving frame” network
that is the dual of the tessellation. When growth is uniform,
the nodes of the lattice at each point in time represent a
fixed fraction (a unit) of the tissue sheet, representing an
increasing area (Fig. 1).
We consider coarse-grained dynamics of quantities

that flow through the network. In animal vasculature, this
is blood, during leaf morphogenesis, the phytohormone
auxin [33]. The flow Fe between two tessellation units i
and j connected by the oriented edge e can be described by
Fe ¼ Keðpj − piÞ=Le, where pi is the potential (i.e., blood
pressure or morphogen concentration) at unit i, Le is the
distance over which the potential varies, and Ke is the
conductivity.
In plants, proteins embedded in the cell membranes are

responsible for transporting auxin [35,36] with facilitated
diffusion constants Ke. In animals, blood flows through
cylindrical vessels of radius Re according to Poiseuille’s
law Ke ¼ zR4

e with a constant z [23,26].
Let Δ: N → E be the network’s oriented incidence

matrix which maps from the node vector space N to the
edge vector space E. We define the flow vector F ∈ E with
components Fe,

F ¼ KL−1Δp; ð1Þ
where p ¼ λνtp0 ∈ N is the potential vector with compo-
nents pi and ν is an (unknown) scalar. The diagonal matrix
L ¼ λtL0 contains the distances, and the diagonal matrix
K ¼ λτtK0 is the dynamically adapting conductivity the
scaling τ of which will be deduced later.
The flow balance at each node reads

ΔTF ¼ S; ð2Þ
where ΔT is the transpose of the incidence matrix and
S ¼ λδtS0 is a source term. Equation (2) is Kirchhoff’s current
law. In plants, the components Si describe production rate
of auxin in unit i, which we take to be uniform [37].
Production scales with the total area, thus δ ¼ 2. In animals,
it describes the amount of blood perfusing the tissue
represented by unit i per time. In effectively 2D tissues such
as the retina, δ ¼ 2; when a 2D vessel network services a 3D
organ (e.g. the cortical surface arterial vasculature and the
brain), δ ¼ 2þ ε, where ε > 0. Combining equations (1)
and (2), we solve for the steady state flows and obtain

F ¼ KL−1ΔðΔTKL−1ΔÞ†S ¼ λδtF0; ð3Þ
where the dagger represents the Moore-Penrose
pseudoinverse.
Generalizing [26,27,31], we propose the adaptation rule

dKe

dt
¼ aðFe=F̂Þ2γ − bKe þ c: ð4Þ

FIG. 1. (a) Immunostained mouse pup retina 7 days after birth.
The hierarchical vascular network is clearly visible. Reprinted
from [32], with permission. (b) Chemically cleared and stained
leaf of Protium wanningianum. The first two levels of vascular
hierarchy are marked in green. (c) Network representation of
vascular flow. Edges (red, with lengths Le) carry flows Fe
(arrows). At nodes (orange, representing areas ai), net currents
Si (dark red arrows, only one shown for clarity) are drawn from
the network, supplying the surrounding tissue. (d)–(f) Sketch of
vascular development. Overlaid in grey is a comoving coarse-
graining grid. At the beginning (d), a tightly meshed capillary
plexus is formed (capillaries in red). During development, the
plexus is pruned and a hierarchical vascular tree is formed either
due to (e) increasing perfusion or (f) growth.
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This equation describes a positive feedback mechanism.
If the flow Fe through an edge is large compared to F̂, its
conductivity increases as controlled by the parameters a, γ.
If the flow is negligible and Ke > c=b, conductivity will
decrease over the time scale b−1; if Ke < c=b, it will
increase. Equation (4) is a generalized model of auxin
canalization in plants and adaptation to vessel wall shear
stress τe ∼ Fe=r3e in animals (see also [33]). Note that
equation (4) does not explicitly model tip growth, which can
be important for the growth of some networks (e.g., [30]).
Equations (3), (4) can be rewritten as the equivalent

system

F0 ¼ K0L−1ΔðΔTK0L−1ΔÞ†S0; ð5Þ
dKe

dt
¼ aðλδt F0

e=F̂Þ2γ − bKe þ c; ð6Þ

where all scaling factors appear explicitly. We see that the
effect of growth is to rescale the flow. Thus equivalent
results are obtained if S is time dependent without growth.
So far the model did not require an explicit time depend-

ence of λt. In what follows, we will focus on the early stages
of development when growth is exponential and assume
λt ¼ eðr=2Þt, where r is the area growth rate. This is a popular
continuum model of growth by cell division (for details,
see [38] and [33]). The dynamics is qualitatively robust as
long as λt increases (sub)exponentially [33].
If δ < 0, adaptation is suppressed and all Ke tend to a

uniform value. If δ ¼ 0, growth has no effect on adaptation
dynamics. If δ > 0, which is the generic case in both plants
(δ ¼ 2) and animals (δ ¼ 2þ ϵ), the flows grow without
bounds as t → ∞. In real organisms growth eventually
stops, preventing this behavior. Thus, our model is valid
only in the earlier stages. In leaves, patterning is completed
long before growth slows down [39].
We can now extract the asymptotic topology by setting

K ¼ λ2γδt K0. The dynamical equation for the asymptotic
conductivities K0 now reads

dK0
e

dt
¼ aðF0

e=F̂Þ2γ − b0K0
e þ λ−2γδt c; ð7Þ

with b0 ¼ ðbþ τ_λt=λtÞ ¼ ðbþ rγδÞ. We see that the effect
of growth on the asymptotic dynamics of the topology is to
exponentially suppress the background production rate c
and shift the decay time scale, where the shift by rγδ comes
from the time derivative of λ2γδt K0. Increasing flow even-
tually dominates over background production.
The model is controlled by the two dimensionless

parameters ρ ¼ b=ðrγδÞ, the ratio between the time scales
for adaptation and growth, and κ ¼ ðc=aÞðF̂=ŜÞ2γ , where
c=a is the ratio between background growth rate and
adaptation strength and the hatted quantities are typical
scales for flow and source strength. In the rest of this Letter
and all figures, we proceed to report dimensionless quan-
tities (see [33] for details). It can be shown (see also [27])

that for any finite ρ the steady states of Eq. (7) correspond
to the critical points of the power dissipation functional

E ¼
X

e

L0
e
ðF0

eÞ2
K0

e
ð8Þ

under the cost constraint
P

eL
0
eðK0

eÞð1=γÞ−1 ≡ const. This
functional leads to realistic networks if the constraint is
concave [6], 1=2 < γ < 1. In the case of plants, it was shown
that Eq. (8) is equivalent to the average pressure drop [10],
the physiologically relevant functional for plants [40].
In the rest of this Letter, we show that for an appropriate
choice of parameters, Eq. (7), which contains only local,
deterministic terms, robustly leads to highly globally opti-
mized networks, i.e., networks whose dissipation rate is
closer to the global minimum of (8) than that of networks
obtained from adaptation alone. Thus, we demonstrate that a
simple physical mechanism such as growth can account
for the remarkable optimality found in natural networks.
To mimic the randomness inherent in biological

systems, we choose a disordered tessellation [33] with
circular boundary and N ¼ 435 nodes. The components
of the source vector are Si ¼ −δ0i þ ð1=N − 1Þð1 − δ0iÞ×
ðai=

P
j≠0ajÞ, where node 0 is at the center of the network

and ai is the area of tessellation unit i (Fig. 1). We use
γ ¼ 2=3, which corresponds to both a general model of
animal vascular remodeling and a volume fixing constraint

FIG. 2. The dynamical transients of equation (7) for κ ¼ 1,
ρ ¼ 50 show hierarchical formation of an optimized network.
Line width is proportional to ðK0

eÞ1=4, color is the potential p, and
time t is measured in units of ðb0Þ−1. (a) The initial K0

e are
smoothed out and a homogeneous network is formed. (b),(c) The
network structure emerges hierarchically, with largest veins first,
and successively smaller veins later. (d) After decaying of small
vessels, the final network is highly organized, hierarchically
ordered, and has a low energy.
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for Eq. (8) [33]. We stress that the results do not depend on
these choices, and are qualitatively similar for other
tessellations, boundary conditions, and values of γ [33].
The network dynamics is generically characterized by

two transient phases. At first, the background production
term dominates, κλ−2γδt ≫ ðF0

e=ŜÞ2γ, creating a homo-
geneous network. As production decays, κλ−2γδt ≲ðF0

e=ŜÞ2γ
holds for some edges ewhere flows are strongest such that
the adaptive feedback takes over. Smaller veins are created
successively as the background production is more and
more suppressed, resulting in a hierarchically organized
network (Fig. 2 and [41]). Additionally, we distinguish
two phases in parameter space. In the stochastic phase
(Fig. 3), the system is rapidly quenched by the adaptive
feedback terms to produce a random, nonsymmetric

network topology; see Fig. 4(a). Different initial con-
ditions lead to different network topologies with a dis-
tribution of energies. In the deterministic phase, initial
smoothing persists long enough to make the final state
virtually independent of the initial conditions. Identical
networks are now obtained from different, random initial
conditions in large areas of parameter space [Figs. 3(b)
and 3(d)]. The position of the phase boundary is largely
independent of network size [Fig. 3(d)] unless the type
of tessellation or the boundary conditions are changed
radically [33]. Adaptation with growth acts as a highly
efficient, deterministic optimization procedure, and can
find an energetically comparable minimum to simulated
annealing [Fig. 3(a)]. The topology of such efficient
networks is characterized by the tendency to reuse the
same edge to supply large parts of the network, as opposed
to directly connecting each node to the source. This is
reflected in the mean number of edges between two
bifurcations (the mean branch length). Efficient networks
tend to exhibit fewer nonbranching nodes [Fig. 3(c)].
Temporally fluctuating sources (similar to [27]) during the
adaptive process can produce loops [33], reminiscent of
real reticulate biological networks. In addition, variable
branching angles [7], growth anisotropies, and steric
effects [33] may also play a role.

(a) (b)

(c) (d)

FIG. 3. The energy landscape shows a stochastic and a
deterministic, optimized phase. The parameter space was parti-
tioned into a 50 × 50 log-spaced grid and for each parameter
value, Eq. (7) was solved until convergence to the steady state for
20 different, random initial conditions on a disordered tessella-
tion. (a) The mean dimensionless energy μðEÞ over 20 networks.
Large κ and ρ roughly correspond to low-energy, optimized
networks. We mark three particular example networks that
are plotted in Fig. 4. The minimum energy network had
Emin ¼ 15.93, the relative improvement was ðEmax − EminÞ=
Emax ¼ 10.3%. The arrow in the color bar marks the minimum
energy solution obtained from 1000 runs of simulated annealing,
Eanneal ¼ 15.98. (b) The relative standard deviation σðEÞ=μðEÞ
shows a separation of the parameter space into a stochastic phase
in which different initial conditions lead to different final net-
works, and a deterministic phase in which all initial conditions
are mapped to the same final state. We mark the same networks as
in (a). (c) Topology correlates with optimization. Highly opti-
mized networks tend to have a low mean branch length (mean
number of edges between bifurcating nodes). The correlation
becomes stronger with increasing κ. (d) The phase boundary in
parameter space is independent of network size. We show the
approximate position of the phase boundary by smoothing (b)
and plotting the contour where σðEÞ=μðEÞ ¼ 10−4 for three
tessellations.

FIG. 4. The steady state networks marked on the energy
landscape in Fig. 3 exhibit a morphological transition. Line
width is proportional to ðK0

eÞ1=4, color is the potential pi.
(a) The network is disordered and not hierarchically organized,
with many long branches connecting directly to the source.
Ea ¼ 17.26. (b) Hierarchical organization begins to appear,
Eb ¼ 16.19. (c) The network is hierarchically organized and
efficient. Few long branches are visible, Ec ¼ 15.95 [compare
with Fig. 1(a)]. (d) Optimal network when the source is at the
boundary showing leaflike main and secondary veins [compare
with Fig. 1(b)].
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We presented a dynamical model of coarse-grained
network adaptation that takes into account effects of
overall network growth or, equivalently, increasing source
strength. We demonstrated that the parameter space of
asymptotic network patterns exhibits a stochastic and a
deterministic phase. The deterministic states were shown to
often provide excellent low-energy networks in the sense
of network optimization. This suggests a simple physical
mechanism such as growth may have been selected for over
the course of evolution to produce highly optimized
venation in plants and animals. Growth effectively reduces
the dimension of the evolutionary search space to two
parameters that can be used to explore the energy land-
scape. Studying appropriate mutants in plants (e.g., similar
to [18,42]) or animals could verify our model. Finally,
we suggest that similar biologically inspired dynamics
could help improve solutions to other global optimization
problems.
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