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When a swelling soft solid is rigidly constrained on all sides except for a circular opening, it will bulge
out to expand as observed during decompressive craniectomy, a surgical procedure used to reduce stresses
in swollen brains. While the elastic energy of the solid decreases throughout this process, large stresses
develop close to the opening. At the point of contact, the stresses exhibit a singularity similar to the ones
found in the classic punch indentation problem. Here, we study the stresses generated by swelling and the
evolution of the bulging shape associated with this process. We also consider the possibility of damage
triggered by zones of either high shear stresses or high fiber stretches.
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Soft solids play a key role inmany biological and physical
processes from active gels to swelling polymers [1]. The
various patterns that they exhibit under constraints and
expansion are known to critically influence both morpho-
genesis and the design of new microdevices. A particularly
dramatic example of shape formation in swelling soft solids
is found in the swelling of the brain. Brain swelling occurs as
a consequence of traumatic brain insults such as strokes,
tumors, or traumatic brain injury and typically leads to raised
intracranial pressure. If the intracranial pressure remains too
high, it prevents blood to perfuse properly into the brain
tissue and, over time,may cause affected regions of the brain
to die by ischemia. Through an osmotic imbalance, this dead
tissue induces more swelling that will further propagate
damage through the brain [2,3]. To prevent such a cata-
strophic cascade, a last recourse consists in performing a
decompressive craniectomy in which a large portion of the
skull is removed to allow the brain to expand. In this highly
invasive procedure, the brain mushrooms out of the skull as
seen in Fig. 1. If the opening is too small, large stresses
develop close to the opening leading to herniation and
possiblevenous occlusion. The bulgingmay also cause large
stretches in axons leading to axonal death and possible long-
termdisability [4,5]. It is therefore crucial to understand both
the shape and stresses developed in swelling soft solids as a
function of the material parameters, swelling, and geometry.
This clinical problem motivates a simple generic physi-

cal problem: when a swelling soft solid is constrained to
expand except through a circular opening, what is the shape
of the bulge? What are the stresses and stretches developed
throughout this process? To answer these questions, we
first consider a simplified version of the bulging problem
where an isotropic elastic solid in frictionless contact with a
plate is constrained to swell through a circular opening as
seen in Fig. 2. We look for axisymmetric solutions for both
the shape and stresses. Finite-element simulations [8] of
this problem for different geometries (Fig. 2) reveal the

existence of drop-shaped regions of high shear stress close
to the contact boundary suggesting a singularity in the
stresses. These regions, studied experimentally in [9,10],
are reminiscent of the stress localization found in other
contact problems such as the Flamant-Cerruti solution [11]
for point loading or the punch problem [12–14]. In
particular the bulging problem, where zero tractions are
prescribed on a disk and fixed displacements are given
outside the disk, can be seen as the conjugate problem to
the cylindrical punch problem where displacements are
prescribed over a disk with zero tractions everywhere else.
It can also be obtained by taking the proper limit of the
annular punch problem [15]. Because of the highly
localized nature of this singularity, we expect the same
type of stress singularity to appear in various geometries.
Bulging due to shear and torsion has also been studied in a
classic experiment by Rivlin in connection to Poynting’s
effect [16]. This bulging effect has also been used to study
the elastic properties of brain tissues [17].
Here, we first consider the exact solution for the bulging

problem in linear isotropic elasticity and use it to obtain the
bulging shape as well as the stress singularity and the drop

FIG. 1. Brain bulging following decompressive craniectomy.
(a) Left fronto-temporo-parietal craniectomy in human [6].
(b) MRI showing herniation and resulting ischemia (white
arrows) after 24 hr following craniectomy on a rat subject to a
middle cerebral artery occlusion [7].
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regions. We compare and complement this analysis with
numerical solutions in large deformations and various
geometries, before returning to the brain bulging problem.
We first consider an isotropic elastic half-space defined

by Ω ¼ fx ¼ ðx; y; zÞ ∈ R3jz ≥ 0g. In this geometry, a
deformation is characterized by the displacement of a
material point x ∈ Ω to a point xþ u ∈ R3. We use the
equivalence between two problems: the first one consists in
finding the elastic strains due tothe uniform swelling of a
half-space constrained by a horizontal plane (z ¼ 0) with a
circular opening. The second one consists in finding the
strains developed in a half-space subjected to a fixed
vertical displacement (along z) of the boundary everywhere
except on a disk. Therefore, uniform swelling in this
geometry can be studied within the classical framework
of elasticity [18]. Using this equivalence, we assume that
the vertical displacements uz are constant everywhere on
the boundary z ¼ 0 except in a circular opening of radius
one centered at the origin.
In linear elasticity, valid for small displacements, the

strain tensor is E ¼ 1
2
½∇uþ ð∇uÞT�. The Cauchy stress

tensor is then T ¼ E=ð1þ νÞ½Eþ ν=ð1 − 2νÞðtrEÞ1� with
Young’s modulus E, Poisson’s ratio ν, and the identity
tensor 1. In the absence of body forces, the Cauchy equation
for elastostatics is ∇ · T ¼ 0. Given the unit normal n to
the boundary, the bulging problem is to determine the
displacement and stresses such that Tn ¼ 0 on the unit
disk, uz ¼ δ outside the unit disk and Tn − ðn · TnÞn ¼ 0
everywhere on the boundary (i.e. frictionless boundary).
An elegant way to solve this contact problem is to use the

Papkovich-Neuber formulation and introduce a harmonic
potential ϕðr; zÞ, in the usual cylindrical coordinates
ðr; θ; zÞ, such that

u ¼ 1þ ν

E

�
4ðν − 1Þωþ∇

�
x:ωþ ϕ

1 − 2ν

��
; ð1Þ

where ω ¼ ez∂ϕ=∂z. All stresses and displacements can
then be obtained from ϕ. For instance, on the surface z ¼ 0,
we have

Tzz ¼ −
∂2ϕ

∂z2 ; uz ¼ 2
ν2 − 1

E
∂ϕ
∂z : ð2Þ

Therefore, our problem amounts to finding a harmonic
function ϕ ¼ ϕðr; zÞ such that

∂2ϕ

∂z2 ¼ 0; 0 ≤ r < 1; z ¼ 0; ð3Þ

∂ϕ
∂z ¼ E

2ðν2 − 1Þ δ; r ≥ 1; z ¼ 0: ð4Þ

Using Collin’s method [19,20], a solution of this problem is
found to be

ϕ ¼ Eδ
πðν2 − 1Þℑm

�Z
∞

1

sF ðr; z; sÞds
�
; ð5Þ

where F ðr; z; sÞ ¼ log ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ itÞ2

p
þ sþ itÞ. This

solution, together with (2), leads to the bulge shape

uzðrÞ ¼ δ − h
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
; r ≤ 1; ð6Þ

where h is the height of the bulge with volume
Vbulge ¼ 2hπ=3. Note that the contact angle is always
π=2 since u0z → ∞ as r → 1. A comparison between this
exact solution from linear elasticity and the shape obtained
by finite-element simulations is shown in Fig. 3(a). Note
that, for comparison with the cylindrical geometry, the
simulations are done on a finite-size cylindrical domain,
taken sufficiently large as to not affect the stress-field close
to the opening. For comparison, the parameter h was taken
as the maximal value of the simulation at r ¼ 0. As

(a) (b)

FIG. 2. Bulging simulation. (a) Cylindrical geometry.
(b) Spherical geometry.

(a)

(c)

(b)

FIG. 3. (a) Bulge shapes obtained from the exact linear solution
(dashed line) compared to the finite-element simulation (solid
line). (b) 3D shape of the bulge (linear solution, h ¼ 0.733).
(c) Internal displacements.
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expected, for small deformations (h≲ 1=2), the exact
solution provides an excellent description of the profile.
The shear stresses are given by

Trz ¼ z
∂3ϕ

∂θ∂z2 : ð7Þ

In Fig. 4, we show that these stresses are in excellent
agreement with the ones obtained from finite-element
simulations with deviations away from the singularity
due to nonlinear and boundary effects. We also observe
characteristic damage drops, which we defined as regions
of high absolute shear stress [regions where jTrzj >
Eϵmax=ð1þ νÞ for a fixed maximal shear strain ϵmax]. It
is of interest to characterize the volume and orientation of
these regions as a function of the size of the bulge h.
For large enough ϵmax, these regions are localized close to
the contact boundary. It is therefore possible to simplify
the rather cumbersome exact solution by considering its
asymptotic expansion for small values of ρ, where ρ is the
distance between a material point and the boundary point
(r ¼ 1þ ρ cos α; z ¼ ρ sin α). To order Oðρ3=2Þ, we find

Tapp
rz ¼ E

4
ffiffiffi
2

p ð1 − ν2Þ
hffiffiffi
ρ

p

× sin α

�
cos

3α

2
−
ρ

4

�
6 cos

α

2
þ cos

5α

2

��
: ð8Þ

The regions such that jTapp
rz j > Eϵmax=ð1þ νÞ form two

drops as shown in Fig. 4, in reasonable agreement with the
exact solution when ϵmax is large enough. From the
dominant terms in (8), the orientations of these two drops
is universal and given by

α� ¼ 2cos−1
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10
ð25 ∓ ffiffiffiffiffiffiffiffi

145
p

Þ
r �

: ð9Þ

We also recover the expected scaling law ρ−1=2 of the
stress around the singularity as found in the classic punch

problem [14]. The total volume of these drops in the
range of validity (h=ϵmax ≲ 0.5) is well approximated by
Vdrop ≈ 0.0183h2=½ϵ2maxð1 − νÞ2�.
Another important quantifier is the stretch of material

fibers. Here, we consider the stretch of a material fiber
normal to the surface in the reference configuration:

λz ¼ 1þ 1þ ν

E

�
z
∂3ϕ

∂z3 þ ð2ν − 1Þ ∂
2ϕ

∂z2
�
: ð10Þ

As can be seen in Fig. 5, the strain (λz − 1) reaches a
maximal value on the axis of symmetry (r ¼ 0). This
maximum is located at zmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=ð2 − νÞp

. At this point,
the stretch becomes maximal in the incompressible limit
ðν → 1=2Þ:

λmax ¼ max
ν∈½0;1=2�

λzðzmaxÞ¼ λz

�
1ffiffiffi
3

p
�
¼ 1þ3

ffiffiffi
3

p
h

8
: ð11Þ

We now consider bulging in large deformations. For
larger swelling, the bulge extends not only radially but also
tangentially as shown in Fig. 6. An interesting indicator of
the shape is the angle between the tangent to the bulge and
the tangent to the sphere as shown in Fig. 6. We compare
this angle with a purely geometric estimate obtained by
computing the angle between two overlapping spheres as a
function of the relative volume increase (i.e. added volume/
original volume):

α ¼ π − 4=3δtan−2=3ðγ=2Þ=ð1þ cos γÞ þOðδ2Þ; ð12Þ

where γ is the opening angle. The favorable comparison
with the simulation performed in spherical geometry [21]
and shown in Fig. 6 indicates that in large deformations
the bulge tends to sphere up uniformly. We also note that
the damage drops appear in the same regions even for large
deformations and that no appreciable finite-size effects
are found.

(a) (b) (c)

FIG. 4. Shear stress in the reference configuration. (a) The
numerical simulation and (b) the exact solution. (c) Comparison
between the exact and approximate solution for the damage drops
(c ¼ ϵmax=h; ν ¼ 0.45; Eh ¼ 1).

FIG. 5. Vertical strain in the reference configuration. The
maximal value of the stretch is reached on the axis of symmetry.
(a) Finite-element simulation. (b) Exact linear solution
(ν ¼ 0.45; Eh ¼ 1).
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We now return to the original brain problem. Clearly, the
brain is a much more complex nonlinear structure with
multilayers and multiple tissues. Yet, the simple estimates
obtained above can provide a useful guide in further
studies. In particular, there are two possible well-known
types of damage during craniectomy. The first one is
herniation due to high stress close to the contact points.
These regions of high shear stresses correspond to the
damage drops and, due to their universal nature, we expect
to observe similar structures in more complex geometries as
seen in Fig. 2. The second one is axonal damage due to the
stretching of axon. It is known that axonal damage may
appear for strains as low as 4% [5]. From our estimate (11),
we see that even if we restrict deformations so that all fiber
strains remain below 20%, the maximal value of the
deformation given by λmaxðhÞ ¼ 1.2 is h ≈ 0.3, a relatively
modest size bulge compared to the ones shown in Fig. 1.
In order to check the possible relevance of these results

in the actual problem of decompressive craniectomy, we
consider the isotropic and homogeneous swelling of an
elastic material whose undeformed shape is a brain encased
in a skull and compute the stress profile in order to obtain
regions where damages may first appear [22]. The material
is constrained by the skull except through an opening
where it can bulge out. We model the elastic response of the
material by a Mooney-Rivlin strain-energy density with
independent coefficients for white and grey matter as well
as cerebellum and cerebral spinal fluid [23] based on
various experimental data sets [24,25] (See Supplemental
Material [26].) Swelling is modeled through a multiplica-
tive decomposition of the deformation gradient [27]. The
simulation of a decompressive craniectomy shown in Fig. 7
reproduces the characteristic bulging observed clinically.
This simulation indicates the existence of very high stresses
close to the contact point and elongated regions of high
shear stress, reminiscent to the damage drops obtained in

simpler geometries, as well as a region of high fiber stretch
below the surface as expected from the idealized case.
Initially motivated by the problem of decompressive

craniectomy, the analysis of bulging in swelling soft solids
reveals a number of interesting features that are found
universally: During bulging, the stress develops a singu-
larity that scales as the inverse square root of the distance to
the opening. Regions of high shear stresses are charac-
terized by finite regions, i.e. the damage drops, whose
orientations close to the singularity were characterized
explicitly. Moreover, regions of high vertical strains,
representing potential axonal damage, are located around
the axis of symmetry and can be quantified by the height of
the bulge. We expect these features to be generic since,
close enough to the boundary, stresses and deformations are
highly localized.
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