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We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC),
Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas.
Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin
waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin
waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With
optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave.
The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya
interaction. Our results pave the way for novel applications in spin-wave routing devices and for the
realization of lenses for spin waves.
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Spin-wave based transistors are an appealing alternative to
the traditional charge-based transistor, since spinwaves carry
information with reduced dissipation compared to charge
currents [1,2]. However, one still has to develop efficient
methods for controlling the spin waves with low energy cost,
a condition not satisfied by the manipulation with magnetic
fields. Spin-orbit coupling (SOC) for conduction electrons is
a quantum-relativistic interaction emerging for spin-wave
control [3–9]. An extensive body of literature has been
devoted to spin waves in ferromagnets subject to the
Dzyaloshinskii-Moriya interaction (DMI). The DMI arises
from SOC [10,11] and causes chiral spin-wave dispersions
[7,12] and damping [13]. Inmost systems the DMI energyD
remains an empirical parameter with a magnitude of a few
percent of the exchange energy J [3,14,15].
The DMI is perfectly suited for spins strongly or weakly

localized. However, for delocalized spins in a Galilean
invariant system, for which the kinetic energy interplays
with the Coulomb exchange and the SOC, all three protag-
onists are responsible for the spin-wave dynamics, like in a
magnetic two-dimensional electron gas (2DEG). One thus
expects a new type of behavior for the spin waves. In our
previous works [6,16], we used the concept of a macroscopic
spin-orbit field enhanced by interactions. Here, by contrast,
we predict the amplitude and direction of the chiral wave-
vector shift of spinwaves using a transformation of themany-
body Hamiltonian of a magnetic 2DEG. We introduce the
concept of spin-orbit twisted spin waves and report con-
clusive experimental evidence. This leads us to the possibility
of optically tuning the electron density to modify and even
reverse the group velocity of the spin waves. We observe
significant differences between the spin-orbit twisted spin
waves and the DMI spin waves. Thus, in delocalized spin

systems, our findings show that SOCoffers the opportunity to
control both the direction and velocity of spin waves without
affecting the spin-wave stiffness and the damping rate.
Spin waves in a magnetic 2DEG.—We focus on spin-

wave excitations of a magnetic 2DEG embedded in a doped
Cd1−xMnxTe quantum well containing a fraction x ¼ 0.013
of substitutional Mn impurities. This system is ideal to
study spin excitations of itinerant two-dimensional elec-
trons, because of its simple free-electronlike conduction
band. The application of a moderate magnetic field B (of
order 2 T) parallel to the plane of the quantum well
polarizes the spins localized on the randomly distributed
Mn atoms, which in turn polarizes the electron gas through
exchange interaction [17]. This causes a Zeeman splitting Z
of order meVof the electronic states in the conduction band
[18], with a negligible orbital quantization. One thus
obtains a spin-polarized 2DEG, with two spin-split para-
bolic sub-bands. The 2DEG electron density (the number of
electrons per unit area) is n2D ¼ 2.7 × 1011 cm−2 and the
mobility is 1.7 × 105 cm2=V s.
Such a 2DEG supports spin-wave modes located in the

energy gap below the continuum of single-particle excita-
tions, the paramagnet equivalent of the Stoner continuum
[29–31]. The energy dispersion of these spin waves is
quadratic with the in-plane momentum q [31–33],

ℏωswðqÞ ¼ Z þ Ssw
ℏ2

2m� q
2 þ iηq: ð1Þ

Here, ωswðqÞ is the spin-wave angular frequency, Ssw is the
spin-wave stiffness in units ofℏ2=2m�,m� is the electron band
mass [34], and ηq ¼ η0 þ η2q2 is a momentum-dependent
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damping rate, also quadratic in q, which has an intrinsic part
(η2q2) caused by a friction with multiple single-particle
excitations [35,36] as experimentally shown [32] and a sample
dependent part (η0) dominated by magnetic disorder [32]. In
contrast with magnons in ferromagnets, Ssw is here a negative
number; i.e., the spin-wave energy starts at the bare Zeeman
energy Z and then decreases, until it merges with the single-
particle continuum where Landau damping occurs.
Spin-orbit twisted spin waves.—A 2DEG electron occu-

pying the quantum state jki is subject to a k-dependent
spin-orbit magnetic fieldBsoðkÞ [see Fig. 1(b)]. Hence, one
might expect that the spin-wave dynamics (stiffness and
damping) should be affected by the set of individual SO
fields. However, we show that the collective behavior is
influenced in a rather simple way as a consequence of
symmetries embedded in the SOC.

The Hamiltonian of our 2DEG has two parts:
Ĥ ¼ Ĥ0 þ ĤSO. Ĥ0 describes a translationally invariant
interacting 2DEG subject to a constant magnetic field
applied in the plane of the quantum well and without
Landau orbital quantization [18,31]. The Coulomb inter-
action in Ĥ0 leads to the formation of spin waves [31],
which propagate with the dispersion of Eq. (1). ĤSO is the
Hamiltonian due to SOC in the conduction band: ĤSO ¼P

i BsoðkiÞ · σ̂i couples the in-plane component of the ith
electronic spin σ̂i with its momentum ki.
SOC arises from two broken inversion symmetries of the

quantum well [37]: the Rashba contribution [38], of
strength α, due to the asymmetric doping along the growth
direction [001], and the Dresselhaus contribution [39], of
strength β, due to the asymmetry of the CdTe crystalline
unit cell. The Rashba part in BsoðkÞ lies in the 2DEG
plane perpendicular to the electron momentum k; the
Dresselhaus part has mirror symmetry with respect to
the crystalline axis [100]. The resulting SOC field is
given by

BsoðkÞ ¼ αk × w þ β½ðk · uÞu − ðk · vÞv�; ð2Þ

where the unit vectors u, v, and w are along the crystallo-
graphic directions [100], [010], and [001].
When expressing ĤSO in the in-plane coordinates ðx; zÞ,

where B ¼ Bez and q ¼ qex, as sketched in Fig. 1(a), we
find, to linear order in k, ĤSO ¼ −ℏq0 · Ĵ

z þ ℏq1 · Ĵ
x.

Here, Ĵν ¼ ð1=2m�ÞPi p̂iσ̂ν;i is the homogenous spin
current of the ν-spin component. The change of coordinates
naturally introduces the two wave vectors q0 and q1, where

qf0
1
g ¼ ð2m�=ℏ2Þ½ðα� β sin 2φÞefxzg þ β cos 2φefzxg�: ð3Þ

Note, first, that the second term in ĤSO couples to the
transverse spin components and thus only produces energy
corrections to second order in SOC [18]. We therefore
neglect it as we limit ourselves to first order considerations.
By contrast, the first term in ĤSO couples to the longi-
tudinal spin components σ̂z;i. Its effect can be similar to a
magnetic field along z, but activated by the electron motion
embedded in the spin-wave oscillation. We can thus infer
that its strength is periodic in real space: the spin wave
creates a q periodicity of the spin phases resulting in a q
periodicity of Ĵz, which in turn twists the spins periodically
in the direction of q0. A positive feedback occurs, leading
to the simple addition of spatial phase changes qþ q0 in
the spin-wave dispersions as depicted in Fig. 1(b).
We can rigorously demonstrate this “spin-orbit twist”

effect by a gauge transformation of Ĥ with the twist

operator Û¼e−i
P

i
q0·riσ̂z;i=2 [40]. This transforms the

momentum operator of the ith electron into Ûp̂iÛ
† ¼

p̂i þ ℏq0σ̂z;i=2, and Ĥ becomes Û Ĥ Û† ¼ Ĥ0, where

FIG. 1. (a) Top plane: Raman incoming (κi) and outgoing (κs)
photon wave vectors. q is the in-plane momentum of the spin
wave probed by the Raman process. The amplitude and direction
of q are controlled by θ and φ, respectively. The magnetic field,
parallel to ez, is always perpendicular to q. Bottom plane: the
spin-wave oscillation in real space is associated with an out-of-
phase oscillation of the two Fermi disks in momentum space with
respect to their equilibrium positions (gray circles). Electron
spins remain parallel or antiparallel to B. (b) Illustration of the
spin-wave twisting caused by SOC. Bottom plane: the momen-
tum-space motion twists the spins with respect to their equilib-
rium positions (gray vectors). A z-spin current parallel to q0

appears. Top plane: the spins now evolve in a moving wavelike
reference frame (highlighted by the blue shading). Consequently,
the spin waves are twisted with a phase q0 · r (see text). [(c)–(e)]
Electronic Raman spectra obtained by varying the momentum q
for [(c) and (d)] φ¼π=4, B ¼ �2 T, and (e) φ ¼ 3π=4, B ¼ 2 T.
The low-energy Raman line, sharply peaked, is a signature of the
spin wave. The smoother structure at higher energy is due to
single-particle excitations. The spectrum highlighted in red for
each case shows the spin-wave maximum energy.
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we neglected terms in the second order of the SOC [18].
Hence, the twist operator restores the spin-rotational
invariance [41,42]. Û imprints a spin rotation along z with
a spatially dependent angle that grows at a rate q0 along the
q0 direction. Consequently, the spin-wave operator is
transformed into ÛŜþ;qÛ

† ¼ Ŝþ;qþq0 .
The final result is that, to first order in SOC, the spin-

wave operators are unchanged, apart from shifting the spin-
wave momentum by q0. The spin-wave equation of motion
in the presence of SOC reads

iℏ
d
dt

Ŝþ;q ¼ ½Ŝþ;q; Ĥ� ¼ Û†½Ŝþ;qþq0 ; Ĥ0�Û: ð4Þ

This equation leads to a spin-wave dispersion and damping
shifted by a wave vector −q0, while protecting the spin-
wave stiffness that remains unaffected by SOC,

ℏωSO
sw ðqÞ ¼ Z þ Ssw

ℏ2

2m� jqþ q0j2 þ iηqþq0 : ð5Þ

Equations (4) and (5) can be interpreted as follows: the
gauge transformation performed above is equivalent to a
quantum change of reference frame in the spin space, the
latter depending on instantaneous positions of electrons.
The new reference frame for the spins is then moving,
following the electron oscillation in real space [see
Fig. 1(b)]. In this new spin frame, the spin wave experi-
ences a constant and uniform magnetic field: its propaga-
tion is determined by Ĥ0 only. This effect is similar to the
drag of optical or acoustic waves in a moving medium
[43,44], except that here the moving medium refers to the
spin space.
Spin-orbit twist effect evidenced by Raman spectra.—To

measure the spin-wave dispersions of Eq. (5) we employ
electronic Raman scattering, which transfers a well-
controlled momentum q ¼ κi;∥ − κs;∥ ≃ 2κi sin θex to the
spin excitations, where κi and κs are the momenta of the
linearly cross-polarized incoming and scattered photons,
respectively. The experimental geometry shown in Fig. 1(a)
defines the incidence angle θ and the in-plane azimuthal
angle φ, which control the magnitude and direction of q,
respectively. The in-plane orientation of the magnetic field
B ¼ Bez is adjusted so that it is always perpendicular to
q ¼ qex. q and B are at the angle φ with, respectively, the
[100] and [010] crystalline directions. The accurate φ
control of q is crucial to evidence the SOC effects on
spin waves.
Figures 1(c)–1(e) show a series of electronic Raman

spectra, obtained at fixed φ ¼ π=4 and B ¼ �2 T, and for
transferred momenta q between∓ 2.5 and �3.8 μm−1 [the
positive sign is defined by the orientation of q in Fig. 1(a)].
The most prominent feature in both series of spectra is the
strong spin-wave Raman line. However, in contrast with the
spin-wave dispersion relation (1), which is valid without

SOC, we observe that for φ ¼ π=4 and B ¼ þ2 T, the
highest spin-wave energy and the minimum linewidth are
not at q ¼ 0, but shifted to q ¼ qs ≃ 1.7 μm−1 (see the red
spectrum). When inverting B to −2 T, the series looks very
similar after inversion of the momentum axis. The extrema
occur symmetrically, at qs ≃ −1.7 μm−1.
These observations are illustrated in Figs. 2(a) and 2(b),

which present the energy and linewidth dispersions as a
function of q, at φ ¼ π=4, for both directions of the
magnetic field. Since the linewidth η of the spin-wave
Raman line yields the damping rate ηq of Eq. (1), Figs. 2(a)
and 2(b) demonstrate that the SOC lifts the chiral degen-
eracy of the spin-wave energy as well as of the damping
rate: the spin-wave energy and linewidth dispersions are
both asymmetric and invariant under simultaneous inver-
sion of the directions of the magnetic field and the wave
vector.
Figure 1(e) shows a series of electronic Raman spectra

obtained at B ¼ þ2 T, but for a different azimuthal angle
φ ¼ 3π=4. The momentum shift now changes to
qs ≃ −0.5 μm−1, which suggests a modulation of qs with

FIG. 2. [(a) and (b)] Lifting of the spin-wave chiral degeneracy
by a momentum shift of the dispersions due to SOC: Momentum
dispersion of energy (a) and linewidth (b) of the spin wave for
φ ¼ π=4 and B ¼ �2 T. Dispersions are shifted by qs from
q ¼ 0 with a mirror symmetry when inverting the magnetic
field. (c) (circle) represents the qs dependence with φ, which
has been extracted from the dispersions measured for
φ ∈ ½ð−π=4Þ; ð3π=2Þ�. The red curve is a fit of qsðφÞ to the x
component of −q0 given by Eq. (3). [(d) and (e)] Universal linear
relation between the linewidth and the energy of the spin wave:
ðη − η0Þ=η2 is plotted as a function of 2m�

ℏ2 ðℏω − ZÞ=Ssw; symbols
of the same color are for a given in-plane angle φ, but for various
values of q. (d) B ¼ þ1 T; open (solid) symbols correspond to
spin waves with wave vector q directed towards −ex (þex).
(e) B ¼ þ2 T; solid symbols correspond, here, to the two
extremal angles φ ¼ π=4, 3π=4; open symbols are for other
angles.
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φ. Indeed, Fig. 2(c) represents the experimental qs
extracted from the dispersions measured for various in-
plane angles φ. qs matches the ex component of −q0. The
π-periodicity of the qsðφÞ modulation is in complete
agreement with the C2v in-plane symmetry of the SOC
arising from the superposition of the Rashba and
Dresselhaus contributions and leading to the expression
of q0 given in Eq. (3). Fitting the experimental values with
Eq. (3) yields the Rashba and Dresselhaus constants α and
β with high accuracy: we find α ¼ 1.83� 0.08 meVÅ and
β ¼ 3.79� 0.11 meVÅ. To summarize, the quadratic
energy and damping dispersions are both shifted by a qs
modulated with φ, while the spin-wave stiffness Ssw ≃
−27.5� 2.6 and damping η2 ≃ 9.9� 2.0 eV μm2 remain
protected.
Chirality in spin-wave energy dispersions and chiral

damping has been observed in Fe monolayers [7]. Chiral
damping dispersions have been observed in Pt=Co=Ni films
[13]. However, Eqs. (1) and (5) show a universal linear
relation between the damping rate and angular frequency of
the spin wave, independent of SOC, which reads

η ¼ ~η0 þ
2m�

ℏ
η2
Ssw

ω; ð6Þ

where ω stands for either ωsw or ωSO
sw , and ~η0 ¼

η0 − 2mZ=ℏ2Ssw. This universal linear behavior is demon-
strated in Figs. 2(d) and 2(e) where the linewidth has been
plotted as a function of energy forB ¼ þ1 T andB ¼ þ2 T
and various in-plane angles. The chirality and anisotropy do
not appear anymore:þex and−ex waves, for everyφ, fall on
the same line, which shows that the relation between spin-
wave energy and damping does not depend on SOCbut only
on the Coulomb and kinetic interactions present in Ĥ0. This
confirms the existence of spin-orbit twisted spin waves
predicted in Eq. (5). Moreover, the linear relation of
Figs. 2(d) and 2(e) was not found in Ref. [13]. This
unambiguously establishes the new physics underlying
the spin-orbit twisted spin waves.
Spin-wave group velocity control.—We can now focus

on the group velocity vector given by vg ¼ ∇qωsw. In the
absence of SOC, vg;q ¼ Sswℏq=m� is radial and vanishes at
zero momentum. In the presence of SOC, Eq. (5) yields
vg;q ¼ Sswℏðqþ q0Þ=m�. Except for φ ¼ π=4ðmod π=2Þ,
vg;q has acquired a nonradial component. The radial
component vanishes along the q ¼ −q0x curve. At
q ¼ 0, the group velocity is no longer 0 and depends on
the respective directions of the magnetization and crystal-
line axis: vg;q¼0 ¼ Sswℏq0=m�.
Since q0 depends on the magnetization direction and on

the strength of the Rashba and Dresselhaus constants
[Eq. (3)], the spin-orbit twist introduces a new way to
control the spin-wave propagation direction, e.g., by varying
the density by optical gating [18]. With this technique, the
electron density can be reproducibly reduced by up to a

factor of 2 in our sample. We set B ¼ 2 T, and for each
density we repeat the procedure exposed in Fig. 2 to extract
the quantities Ssw, α, and β and evaluate the group velocity.
Respective variations of the spin-wave stiffness, α and β,
with the density are given in Supplemental Material [18].
The group velocity control is summarized in Fig. 3, for

the specific case of φ ¼ 3π=4. The momentum shift qs (red
dots) is plotted as it varies with the density n2D. Standing
spin waves correspond to the curve q ¼ qsðn2DÞ. When
departing from this curve, the group velocity acquires a
positive or negative component, which for that specific
angle (φ ¼ 3π=4) is always collinear with q. For example,
at fixed momentum transfer q ¼ −0.6 μm−1, the spin
wave propagates upward when n2D ¼ 2.7 × 1011 cm−2

and downward for n2D ¼ 1.5 × 1011 cm−2. This illustrates
the control of the spin-wave propagation direction that can
be obtained via density control by optical gating (as shown
here) or by electrical gating.
In conclusion, we showed that the interplay of SOC

and Coulomb interaction in itinerant electronic systems
profoundly affects the spin-wave dynamics. Our first-
principles predictions and related experimental confirma-
tion demonstrate that, to leading order in the Rashba and
Dresselhaus field strengths, the dispersions in energy and
damping rate are both simply rigidly shifted by a wave
vector q0 without any change of the universal relation
between damping and energy. The rigid shift is similar to
that of spin waves subject to Dzyaloshinskii-Moriya
interaction (well suited for localized spins). However,
the conservation of the universal relation is new. This
leads us to introduce the concept of spin-orbit twisted
spin waves. Their group velocity acquires a nonradial

FIG. 3. Optical gating of the spin-wave group velocity. The
group velocity vector changes for φ ¼ 3π=4 and B ¼ 2 T as a
function of momentum and electron density (note that the group
velocity is purely longitudinal at φ ¼ 3π=4): a spin wave with
momentum q ¼ −0.5 μm−1 experiences an inversion of its group
velocity when the density is changed from 1.8 to 2.7×1011 cm−2.
The red dots, where q ¼ qs, indicate a standing spin wave.
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component and can be controlled by the strength of the
SOC. This effect opens up opportunities to control the
propagation direction of spin waves by manipulating the
SOC field strengths, e.g., by gating the sample. It can be
exploited in spintronics to build, e.g., spin-wave routing
devices or spin-wave lenses with patterning of the SOC.
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