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We construct an exact map between a tight-binding model on any bipartite lattice in the presence of
dephasing noise and a Hubbard model with imaginary interaction strength. In one dimension, the exact
many-body Liouvillian spectrum can be obtained by application of the Bethe ansatz method. We find that
both the nonequilibrium steady state and the leading decay modes describing the relaxation at late times
are related to the η-pairing symmetry of the Hubbard model. We show that there is a remarkable relation
between the time evolution of an arbitrary k-point correlation function in the dissipative system and
k-particle states of the corresponding Hubbard model.
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Introduction.—The coupling to the environment often
has a non-negligible influence on a many-particle system,
and the coupling may drive it to a nonequilibrium steady
state (NESS) that is different from the ground or thermal
equilibrium states. Within the so-called Markovian descrip-
tion, assuming that the internal bath dynamics is much
faster than that of the system so there is no backaction of
the system onto its environment, one has a well-defined
mathematical description of open many-body systems in
both classical and quantum contexts. In the quantum realm,
the open system’s Liouvillian dynamics is described by
the Lindblad master equation [1] for the time-dependent
density matrix. A standard way of analyzing the Lindblad
equation is by means of perturbative methods [2,3], but
it is highly desirable to have exact solutions in specific
representative cases. While NESSs have been constructed
exactly in a number of cases, in both classical [4] and
quantum settings [5–7], solving the full dynamics, i.e.,
diagonalizing the Liouvillian, for any nontrivial many-body
system is a formidable task. In the quantum case, this has
been possible until now only for noninteracting systems
[5]. On the other hand, in certain classical stochastic many-
body systems, like the asymmetric simple exclusion proc-
esses, the full Markov chain can be diagonalized in terms of
the Bethe ansatz [8]. It is then natural to ask whether there
are quantum many-body dissipative systems that are Bethe
ansatz solvable.
In this Letter we present an exactly solvable dissipative

many-body quantum system that is not equivalent to a
free theory: a fermionic tight-binding model on a bipartite
lattice with dephasing noise. In one spatial dimension,
this model is equivalent, up to boundary conditions, to a
dephased spin-1=2 XX chain. The model has applications
to ultracold atoms in an optical lattice subjected to light
scattering [9], and to superconducting flux qubits coupled
to a fluctuating electromagnetic environment [10]. The
dissipation in the form of dephasing destroys the quantum

coherence, i.e., off-diagonal density matrix elements in the
Fock space basis. It is known that such models exhibit
diffusive behavior [11,12].
Even though the Hamiltonian of our model is quadratic

in fermion operators, the dissipative term leads to quartic
terms in the effective evolution operator, which renders its
diagonalization a nontrivial task. We put forward a simple
unitary transformation, within the thermofield description
[13], that maps the Liouvillian superoperator of our model
on an arbitrary bipartite lattice to the Hubbard Hamiltonian
with imaginary interaction strength. In one spatial dimen-
sion, this means that the entire machinery of the Bethe
ansatz formalism [14] is applicable: we can obtain the full
Liouvillian spectrum by solving the Bethe ansatz equa-
tions, as well as reconstructing the time evolution of the
density matrix by expanding it over the Bethe ansatz wave
functions.
Dephasing model.—We consider dissipative many-body

dynamics of free fermions on a bipartite lattice in the tight-
binding approximation with the Hamiltonian

H ¼
X
hj;ki

ða†jak þ a†kajÞ: ð1Þ

Here, a†j (aj) is the fermionic reaction (annihilation)
operator on site j, and hj; ki denote nearest-neighbor links
connecting the two sublattices A and B. The dissipative
dynamics is described by the Lindblad equation
ð∂ρ=∂tÞ ¼ L½ρ�, where

L½ρ� ¼ −i½H; ρ� þD½ρ�;
D½ρ� ¼

X
j

ð2ljρl†j − fl†j lj; ρgÞ: ð2Þ

The Lindblad operators are lj ¼
ffiffiffiffiffi
2γ

p
a†jaj. The derivation

of this dissipation term follows Refs. [1,9,15]. The dephas-
ing strength γ is a function of the laser intensity and
detuning.
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It is useful to express the generator of the time evolution
(Liouvillian) in the thermofield representation [13]. To that
end, we introduce a second set of fermionic operators, ~a†j
and ~aj, which act on the density matrix by right multipli-
cation [16,17]. The Liouvillian then takes the form

L ¼ −iHþ 2γ
X
j

ð2a†jaj ~a†j ~aj − a†jaj − ~a†j ~ajÞ; ð3Þ

where H ¼ H − ~H is the time-evolution generator of the
closed system in the thermofield representation. We
note that the total numbers of particles of each “flavor”
(nontilde and tilde operators)M1 ¼

P
ja

†
jaj,M2¼

P
j ~a

†
j ~aj

are conserved during time evolution, as is their sum,
N ¼ M1 þM2. In the following, we will choose
M1 ≡M and N as good quantum numbers for our problem.
Transformation to an imaginary-u Hubbard model.—

We now perform a unitary transformation which flips the
sign of the tilde Hamiltonian

U ¼
Y
j∈A

eiπ ~a
†
j ~aj ¼

Y
j∈A

ð1 − 2~a†j ~ajÞ: ð4Þ

In the transformed basis, the generator of time evolution
can be written as the Hamiltonian of the Hubbard model
at a finite imaginary chemical potential and imaginary
interaction strength u ¼ iγ:

HHubb ≡ iU†LU ¼
X

hj;ki;σ¼↑;↓

ðc†j;σck;σ þ H:c:Þ

þ 4u
X
j

nj;↑nj;↓ − 2u
X

j;σ¼↑;↓

nj;σ: ð5Þ

Here the spin-up and spin-down fermion operators are
related to the normal and tilde operators of the depha-
sing model by ci;↑ ¼ ai, ci;↓ ¼ ~ai, and nj;σ ¼ c†j;σcj;σ .
The imaginary-u Hubbard model (5) exhibits an SOð4Þ
symmetry [14,18,19]. The generators of the constituent
η-pairing SUð2Þ algebra are ηz ¼Pjðnj;↑þnj;↓−1Þ,
ηþ¼Pj∈Ac

†
j;↓c

†
j;↑−

P
j∈Bc

†
j;↓c

†
j;↑¼ðη−Þ†, and they will

play an important role in the following.
Steady state.—The NESS is characterized by the con-

dition Lρ ¼ 0. In the sector L ¼ N ¼ 2M, where L is the
total number of sites, it is easy to read off the NESS in the
Hubbard model representation

jNESSi ¼ ðη†ÞMj0i; ð6Þ
where j0i is the fermion vacuum defined by cj;σj0i ¼ 0.
Given that HHubbj0i ¼ 0, the η-pairing symmetry implies
that the state (6) has a zero eigenvalue as well and therefore
is a steady state. η-pairing states like (6) attracted attention
in the early 1990s in relation to high-Tc superconductivity
because they are exact eigenstates of the Hubbard
Hamiltonian that display off-diagonal long-range order
[19]. However, in the Hubbard model, they can never be
ground states. The corresponding state in the dissipative

model is obtained by undoing the unitary transformation
(4) and is of the form

P
nj∈f0;1gjn1;…; nLi↑ ⊗

jn1;…; nLi↓, where jn1;…; nLi run over all Fock states
of one flavor. Hence, the density matrix corresponding
to the NESS is an identity operator and represents a
completely mixed (infinite temperature) state.
Correlation function–wave function duality.—The evo-

lution of the expectation value of the operator O obeys the
equation

dhOi
dt

¼ tr

�
dρ
dt

O

�
¼ trðL½ρ�OÞ: ð7Þ

A straightforward calculation [substituting the explicit form
of L½ρ� in Eq. (7) and using cyclic permutation invariance
under the trace] shows that the equation for the dissipative
time evolution of the 2k-point correlation function

Gm1;…;mk
n1;…;nk ðtÞ ¼ tr½a†m1

;…; a†mkan1 ;…; ankρðtÞ�
is given by the same equation as the evolution of the density
matrix elements corresponding to the wave functions in the
2k-particle sector Ψm1;…;mk

n1;…;nk ≡Gm1;…;mk
n1;…;nk ,

ρðtÞ¼
X

m1;…;mkn1;…;nk

Ψm1;…;mk
n1;…;nk ðtÞa†m1

;…;a†mk j0ih0jan1 ;…;ank :

This duality, combined with the integrability of the
imaginary-u Hubbard model, gives a simple way for cal-
culating general correlation functions of the tight-binding
model with dephasing.
It was noted previously [12] that a one-dimensional

tight-binding model with (different) dephasing gives rise to
a closed system of equations for correlation functions up to
a given order, but in our case the Bethe ansatz solvability
makes the duality much more powerful.
Liouvillian spectrum in one dimension.—The fact that

the interaction strength is purely imaginary does not spoil
the algebraic integrability structure of the Hubbard model.
In fact, the Bethe ansatz wave functions (related to the
system’s density matrix) and the Bethe ansatz equations
(BAEs) are simply obtained from the regular Hubbard
model by taking the interaction strength to be imaginary.
The BAEs for our case read [20]

eikjL ¼F1

YM
α¼1

Λα− sinkjþ γ

Λα − sinkj− γ
; j¼ 1;…;N;

YN
j¼1

Λα − sinkjþ γ

Λα − sinkj − γ
¼F2

Y
β;β≠α

Λβ −Λαþ 2γ

Λβ −Λα − 2γ
; α¼ 1;…;M:

ð8Þ

Here, kj and Λα are rapidities corresponding to charge
and spin excitations, and we have introduced phase factors
F1;2 for our later convenience. In the case at hand, we
have F1 ¼ F2 ¼ 1. The eigenvalues of the Liouvillian
Lρϵ ¼ ϵρϵ corresponding to a given solution of the
Bethe equation fkjg are
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ϵðfkjgÞ ¼ −2i
XN
j¼1

cos kj − 2Nγ: ð9Þ

While the BAEs allow us, in principle, to determine the full
spectrum of the Liouvillian, we will be mainly interested
in the structure of the slowest decaying NESS excitations
[21], i.e., eigenvalues with the largest real parts.
Spectral properties of the Hubbard Hamiltonian are

commonly analyzed in the framework of the so-called
string hypothesis [14,22,23], which assumes that, up to
corrections that are exponentially small in system size, the
roots of all solutions form particular “string” patterns in
the complex plane. The structure of the solutions of the
imaginary-u BAEs is substantially different than in the
usual Hubbard model. Interestingly, there exists a class of
string solutions involving both k’s and Λ’s that is important
for describing the late time behavior. A single such “k-Λ

string” of lengthm consists of 2m charge rapidities kðmÞ
α;j and

m spin rapidities ΛðmÞ
α;j such that, for λðmÞ

α < 0,

kðmÞ
α;j ¼ arcsin½iλðmÞ

α − ðm − 2jþ 2Þγ�;
kðmÞ
α;jþm ¼ π − arcsin½iλðmÞ

α þ ðm − 2jþ 2Þγ�;
ΛðmÞ
α;j ¼ iλðmÞ

α þ γðmþ 1 − 2jÞ; 1 ≤ j ≤ m: ð10Þ

For a positive λðmÞ
α > 0, the structure of the string solution is

the same as Eq. (10), with the replacement γ → −γ. We
stress that Eq. (10) is quite distinct from the k-Λ strings in
the usual Hubbard model [14]: the string centers are
imaginary rather than real, and the k’s enter as pairs (k,
π þ k�) rather than as (k, k�). An example of a k-Λ string
solution in our model is shown in the left inset of Fig. 1. In
the usual Hubbard model, a k-Λ string of length m is a
multiparticle bound state ofm fermions with spin-up andm
fermions with spin-down [14,24]. In the present context,
k-Λ string solutions to the BAEs correspond to density
matrices of our open system that have exponentially
decaying off-diagonal matrix elements. For example,
in the sector N ¼ 2M ¼ 2, the NESS excitations
Lρm ¼ ϵmρm, ρm ¼ ρ†m can be represented as ρm ¼P

x1;x2
ρmðx1; x2Þj0…1x1…0ih0…1x2…0j, ρmðx1; x2Þ ¼

½ð−1Þx1−x2wþ w��e−ξmjx1−x2j, if x1 ≥ x2 and ρmðx2; x1Þ ¼
ρmðx1; x2Þ�, where w ¼ e−iqmðx1þx2Þ and qm ¼ �ðπm=LÞ,
ξm ¼ arccoshðγ= sin qmÞ, 1 ≤ m ≤ ðL=2Þ.
For the particular subset of solutions of Eq. (8) that

consists only of k-Λ strings, we may use the string
hypothesis (10) to obtain the following set of equations

for the string centers λðnÞα :

LfmðλðmÞ
α Þ ¼ 2πJðmÞ

α þ
X
ðm;βÞ

Θnm

 
λðmÞ
α − λðnÞβ

γ

!
: ð11Þ

Here, fmðxÞ¼sgnðxÞ½π−arcsinðixþmγÞþarcsinðix−mγÞ�,
and ΘnmðxÞ¼2θðx=jn−mjþ2Þþ���þ2θðx=nþm−2Þþ

θðx=nþmÞþð1−δn;mÞθðx=jn−mjÞ, with θðxÞ ¼
2 arctanðxÞ, is the same function as in the usual Hubbard

model. The (half-odd) integers JðmÞ
α have the ranges

jJðmÞ
α j ≤ ðL − 1=2Þ − ð1=2ÞPn¼1½2minðm; nÞ − δm;n�Mn.

Here, Mn is the number of k-Λ strings of length n, and
N ¼ 2M ¼P∞

n¼1 2nMn. The corresponding eigenvalues
of the Liouvillian are real and are given by

ϵ ¼ 4
X
ðm;αÞ

Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðijλðmÞ

α j −mγÞ2
q

− 2γN: ð12Þ

Moreover, studies of small systems L ≤ 8 strongly suggest
that k-Λ string solutions and their η-pairing descendant
states provide all of the slowly decaying NESS excitations.
In Fig. 1 we show the full spectrum of L’s for L ¼ 6.
The states with ReðϵÞ > −2γ are all given by k-Λ string
solutions and their η-pairing descendants; cf. the right inset
of Fig. 1. The situation for L ¼ 8 is analogous. Assuming
this to hold in general, we can obtain the eigenvalues of L
with the largest real parts (i.e., the eigenvalues closest to
zero) from Eq. (11) for the string centers. For solutions

FIG. 1. Spectrum of the tight-binding model with dephasing
for L ¼ 6, 2γ ¼ 1.75. Vertical dashed lines indicate multiples
of −2γ. As a result of the PT -symmetry [25] of the Liouvillian,
the spectrum exhibits a D2 point group symmetry. (Left inset)
Schematic representation of the 1kΛ-string solution of the Bethe
equations, for the imaginary u-Hubbard model (the solid sym-
bols), and for the usual Hubbard chain with a real u (the empty
symbols). (Right inset) Close-up of the slowest decaying modes.
The numbers indicate the degeneracies, which are consistent with
the translation from lower to higher magnetization sectors via the
η symmetry. For example, 10 ¼ 5 × 2 is obtained by counting the
number of η-pairing descendant states in sectors with higher
numbers of particles (there are L − 1 ¼ 5), while the factor of 2 is
due to a degeneracy in the sector N ¼ 2, M ¼ 1 of the η-pairing
lowest weight states, which is a consequence of the parity
symmetry of the Hamiltonian (5). The nondegenerate state shown
has N ¼ 2M ¼ 6 and is a singlet with respect to both parity and
the η pairing.
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consisting of a single k-Λ string n, i.e.,Mn ¼ 1,Mj≠n ¼ 0,
we find a sequence of eigenvalues with

ϵn;j ¼ −
1

γ

2π2ðnþ j − 1Þ2
nL2

þOðL−4Þ; j ∈ Nþ; ð13Þ

where we have assumed n; jjj ≪ L. Let us denote the
corresponding eigenstates by jn; ji. Using the η-pairing
symmetry we can construct degenerate states in the sector
N ¼ 2M ¼ 2kþ 2n of the form

ðη†Þkjn; ji: ð14Þ

This shows that the spectrum of the dephasing model is
gapless in the thermodynamic limit in any magnetization
sector. For a large but finite L, the smallest gap is given
by ϵ1;1. The above construction carries over to general
nonintegrable bipartite lattices in the sense that NESS
excitations can be constructed from two-particle states by
acting with an appropriate power of η†. In contrast to the
usual Hubbard model [26], perturbation theory in 1=γ
suggests that η-pairing NESS excitations are stable to
typical perturbations in the sense that they do not couple
to states in the complex part of the spectrum and that they
retain real eigenvalues.
Large-γ limit.—It is known that in the limit of a strong

dephasing γ ≫ 1, the late time dynamics of our system is
described by a classical stochastic process on the space of
the diagonal density matrices, with an evolution operator
that is equivalent to the Hamiltonian of the spin-1=2
Heisenberg chain [27]. This relation implies that the
NESS excitations are gapless in any space dimension, as
the lowest lying excitations of the ferromagnet are gapless.
We have already commented that the k-Λ solutions describ-
ing the longest living NESS excitations have exponentially
decaying off-diagonal matrix elements (they decay expo-
nentially away from diagonal with a scale determined from
the solution of the BAE). In the large-γ limit, further
simplifications occur. Specifically, the BAEs (11) reduce
to Takahashi’s equations for the spin-1=2 Heisenberg

ferromagnet [22]: rescaling the rapidities λðmÞ
α ¼ γμðmÞ

α

and then taking γ → ∞ gives

LθðμðmÞ
α =mÞ ¼ 2πJðmÞ

α þ
X
ðm;βÞ

ΘnmðμðmÞ
α − μðnÞβ Þ;

ϵ ¼ −
1

γ

X
ðm;αÞ

2m

m2 þ ðΛðmÞ
α Þ2

: ð15Þ

The emergence of an effective description in terms of a
Heisenberg ferromagnet in the large-γ regime of the
dissipative model should be contrasted with the large-u
expansion in the real-u Hubbard model. Indeed, the low
energy manifold for the Hubbard model with a large real
interaction strength consists of configurations with zero or
one fermion per site only, while, for the strongly dissipative

case, the allowed configurations are those with zero or two
fermions per site (corresponding to the mostly diagonal
density matrices). The analogue of the large-u expansion in
the dissipative case gives access to rapidly decaying modes
with ϵ ≈ −2γN.
Relaxation dynamics.—It has been shown [11,12] that

in the sector N ¼ 2, M ¼ 1 the relaxation dynamics is
diffusive, both by means of spectral considerations [11] and
by studying the decay [12] h2a†1a1 − 1i ∝ t−1=2 of an
initially localized excitation h2a†jaj − 1it¼0 ¼ δj;1 [28].
By considering the off-diagonal elements of the density
matrix and using the duality between the density matrices
and correlation functions, one can easily calculate the
decay of coherences in the many-particle states of the
tight-binding model and obtain the dependence ∼t−3=2
(similar to a numerical result for the coherences in the
XXZ model with dephasing obtained in Ref. [27]. The long
time relaxation of many-particle states is influenced by the
bound-state-like NESS excitations.
XX model with dephasing.—Most of our results apply

also to the spin-1=2 XX chain with the dephasing
HXX¼ð1=2ÞPL

j ðσþjþ1σ
−
j þσþj σ

−
jþ1Þ, lXXj ¼ ffiffiffiffiffiffiffi

γ=2
p

σzj, where
σþ, σ−, σz are Pauli spin matrices. The XX chain can be
mapped to a tight-binding model with dephasing by means
of a Jordan-Wigner transformation, but we now have to
impose periodic (p) [antiperiodic (a)] boundary conditions
in the even (odd) magnetization sectors [29]. Proceeding as
before, we eventually arrive at an imaginary-u Hubbard
Hamiltonian (5). However, spin-σ fermions now have
periodic (antiperiodic) boundary conditions if their total
number is even (odd). Altogether, we therefore have four
distinct sectors, ðp; pÞ, ðp; aÞ, ða; pÞ, ða; aÞ. As a conse-
quence, the imaginary-u Hubbard Hamiltonian does not
exhibit the full SOð4Þ symmetry, but as ðηþÞ2 acts within a
given sector, it commutes with the Hamiltonian. In spite of
the changed boundary conditions, the model remains
integrable. The BAEs are again of the form (8), but we
now have F1 ¼ ð−1ÞN−M−1, F2 ¼ ð−1ÞN . Low-lying exci-
tations can again be analyzed by means of the string
hypothesis (10) and Eq. (11) for the string centers. The
main difference from the dissipative tight-binding model is
that, in the XX case, there is no closed form expression
for the expectation values of the k-point spin correlation
functions, as the spins are nonlocal in terms of the
Jordan-Wigner fermions.
Generalization to open boundaries.—If, in addition to

dephasing, there is an influx or outflux of particles on the
boundary sites; i.e., there are additional Lindblad operators
l1;2 ¼ a†1;L, l3;4 ¼ a1;L or lXX1;2 ¼ σþ1;L, lXX3;4 ¼ σ−1;L—the
Liouvillian in the thermofield language has the form of
the Hubbard model with imaginary interaction and with an
imaginary boundary magnetic field. The resulting model is
again Bethe ansatz solvable [30]. We note that the current-
carying NESS of such a model has a simple explicit matrix
product form [6].
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Conclusions.—We have shown that a dissipative tight-
binding model on a bipartite lattice can be mapped to a
Hubbard model with imaginary interaction strength. The
NESS and the relaxational dynamics at late times is related
to the η-pairing symmetry of the Hubbard model. In one
spatial dimension, we have used the Bethe ansatz solution
to derive exact results on the spectrum of the Liouvillian.
Our result paves the way for further study of Bethe ansatz
solvable quantum dissipative systems.

This work was supported by the Slovenian Research
Agency (ARRS) under Grants No. J1-5439 and No. N1-
0025, the ERC grant OMNES (M. V. M. and T. P.), and by
the EPSRC under Grant No. EP/N01930X. F. H. L. E. and
T. P. thank the Isaac Newton Institute for Mathematical
Sciences for their hospitality and for the support from
Grant No. EP/K032208/1. M. V. M. is grateful to Marko
Medenjak for the numerous discussions.

[1] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, New York,
2002), Chap. 3.5, p. 166.

[2] A. C. Y. Li, F. Petruccione, and J. Koch, Perturbative
approach to Markovian open quantum systems, Sci. Rep.
4, 4887 (2014).

[3] L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh field
theory for driven open quantum systems, Rep. Prog. Phys.
79, 096001 (2016).

[4] B. Derrida, E. Domany, and D. Mukamel, An exact solution
of the one-dimensional asymmetric exclusion model with
open boundaries, J. Stat. Phys. 69, 667 (1992); B. Derrida,
M. R. Evans, V. Hakim, and V. Pasquiert, Exact solution of a
1D asymmetric exclusion model using a matrix formulation,
J. Phys. A 26, 1493 (1993); R. A. Blythe and M. R. Evans,
Nonequilibrium steady states of matrix-product form: A
solver’s guide, J. Phys. A 40, R333 (2007).

[5] T. Prosen, Third quantization: A general method to solve
master equations for quadratic open Fermi systems, New J.
Phys. 10, 043026 (2008).

[6] M. Žnidarič, Exact solution for a diffusive nonequilibrium
steady state of an open quantum chain, J. Stat. Mech. (2010)
L05002; Solvable quantum nonequilibrium model exhibit-
ing a phase transition and a matrix product representation,
Phys. Rev. E 83, 011108 (2011).

[7] T. Prosen, Exact Nonequilibrium Steady State of a Strongly
Driven Open XXZ Chain, Phys. Rev. Lett. 107, 137201
(2011); Exact Nonequilibrium Steady State of an Open
Hubbard Chain, Phys. Rev. Lett. 112, 030603 (2014);
T. Prosen, Matrix product solutions of boundary driven
quantum chains, J. Phys. A 48, 373001 (2015).

[8] L.-H. Gwa and H. Spohn, Six-Vertex Model, Roughened
Surfaces, and an Asymmetric Spin Hamiltonian, Phys. Rev.
Lett. 68, 725 (1992); Bethe solution for the dynamical-
scaling exponent of the noisy Burgers equation, Phys. Rev.
A 46, 844 (1992); D. Kim, Bethe ansatz solution for
crossover scaling functions of the asymmetric XXZ chain
and the Kardar-Parisi-Zhang-type growth model, Phys. Rev.
E 52, 3512 (1995); O. Golinelli and K. Mallick, Bethe
ansatz calculation of the spectral gap of the asymmetric

exclusion process, J. Phys. A 37, 3321 (2004); J. de Gier and
F. H. L. Essler, Bethe Ansatz Solution of the Partially
Asymmetric Exclusion Process, Phys. Rev. Lett. 95,
240601 (2005); Exact spectral gaps of the asymmetric
exclusion process with open boundaries, J. Stat. Mech.
(2006) P12011; Slowest relaxation mode of the partially
asymmetric exclusion process with open boundaries, J.
Phys. A 41, 485002 (2008); K. Mallick, Some exact results
for the exclusion process, J. Stat. Mech. (2011) P01024;
N. Crampe, E. Ragoucy, and D. Simon, Matrix coordinate
Bethe ansatz: Applications to XXZ and ASEP models,
J. Phys. A 44, 405003 (2011).

[9] S. Sarkar, S. Langer, J. Schachenmayer, and A. J. Daley,
Light scattering and dissipative dynamics of many
fermionic atoms in an optical lattice, Phys. Rev. A 90,
023618 (2014).

[10] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der
Wal, and S. Lloyd, Josephson persistent-current qubit,
Science 285, 1036 (1999).

[11] M. Esposito and P. Gaspard, Exactly solvable model of
quantum diffusion, J. Stat. Phys. 121, 463 (2005).

[12] V. Eisler, Crossover between ballistic and diffusive trans-
port: The quantum exclusion process, J. Stat. Mech. (2011)
P06007.

[13] H. Umezawa, Advanced Field Theory: Micro, Macro and
Thermal Physics (AIP Press, New York, 1993).

[14] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper,
and V. E. Korepin, The One-Dimensional Hubbard
Model (Cambridge University Press, Cambridge, England,
2005).

[15] C. W. Gardiner and P. Zoller, Quantum Noise (Springer,
New York, 1991), Chap. 3.6, p. 77.

[16] A. A. Dzhioev and D. S. Kosov, Nonequilibrium perturba-
tion theory in Liouville-Fock space for inelastic electron
transport, J. Phys. Condens. Matter 24, 225304 (2012).

[17] Let us note that, in general, fermionic models in the double
channel representation have a more complicated structure
of the Hilbert space compared to the spin systems. The
obtained simple form of the dissipator is due to the simple
form of the Lindblad operators: they conserve the particle
number and are quadratic.

[18] O. J. Heilmann and E. H. Lieb, Violation of noncrossing rule
—Hubbard Hamiltonian for benzene, Ann. N.Y. Acad. Sci.
172, 584 (1971).

[19] C. N. Yang, η-Pairing and Off-Diagonal Long-Range Order
in a Hubbard Model, Phys. Rev. Lett. 63, 2144 (1989); C. N.
Yang and S. C. Zhang, SO4 symmetry in a Hubbard model,
Mod. Phys. Lett. B 04, 759 (1990).

[20] E. H. Lieb and F. Y. Wu, Absence of Mott Transition in an
Exact Solution of the Short-Range, One-BandModel in One
Dimension, Phys. Rev. Lett. 20, 1445 (1968).

[21] NESS excitations are defined as traceless and Hermitian
linear combinations of the eigenoperators of the Liouvillian
which have the same decay rate. The name excitation goes
in analogy with excitations in the Hamiltonian dynamics,
though, for the Liouvillian, the excitations are counted from
the NESS, not from the ground state. For a more detailed
explanation of the term, see M. V. Medvedyeva and S.
Kehrein, Power-law approach to steady state in open lattices
of noninteracting electrons, Phys. Rev. B 90, 205410
(2014).

PRL 117, 137202 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

23 SEPTEMBER 2016

137202-5

http://dx.doi.org/10.1038/srep04887
http://dx.doi.org/10.1038/srep04887
http://dx.doi.org/10.1088/0034-4885/79/9/096001
http://dx.doi.org/10.1088/0034-4885/79/9/096001
http://dx.doi.org/10.1007/BF01050430
http://dx.doi.org/10.1088/0305-4470/26/7/011
http://dx.doi.org/10.1088/1751-8113/40/46/R01
http://dx.doi.org/10.1088/1367-2630/10/4/043026
http://dx.doi.org/10.1088/1367-2630/10/4/043026
http://dx.doi.org/10.1088/1742-5468/2010/05/L05002
http://dx.doi.org/10.1088/1742-5468/2010/05/L05002
http://dx.doi.org/10.1103/PhysRevE.83.011108
http://dx.doi.org/10.1103/PhysRevLett.107.137201
http://dx.doi.org/10.1103/PhysRevLett.107.137201
http://dx.doi.org/10.1103/PhysRevLett.112.030603
http://dx.doi.org/10.1088/1751-8113/48/37/373001
http://dx.doi.org/10.1103/PhysRevLett.68.725
http://dx.doi.org/10.1103/PhysRevLett.68.725
http://dx.doi.org/10.1103/PhysRevA.46.844
http://dx.doi.org/10.1103/PhysRevA.46.844
http://dx.doi.org/10.1103/PhysRevE.52.3512
http://dx.doi.org/10.1103/PhysRevE.52.3512
http://dx.doi.org/10.1088/0305-4470/37/10/001
http://dx.doi.org/10.1103/PhysRevLett.95.240601
http://dx.doi.org/10.1103/PhysRevLett.95.240601
http://dx.doi.org/10.1088/1742-5468/2006/12/P12011
http://dx.doi.org/10.1088/1742-5468/2006/12/P12011
http://dx.doi.org/10.1088/1751-8113/41/48/485002
http://dx.doi.org/10.1088/1751-8113/41/48/485002
http://dx.doi.org/10.1088/1742-5468/2011/01/P01024
http://dx.doi.org/10.1088/1751-8113/44/40/405003
http://dx.doi.org/10.1103/PhysRevA.90.023618
http://dx.doi.org/10.1103/PhysRevA.90.023618
http://dx.doi.org/10.1126/science.285.5430.1036
http://dx.doi.org/10.1007/s10955-005-7577-x
http://dx.doi.org/10.1088/1742-5468/2011/06/P06007
http://dx.doi.org/10.1088/1742-5468/2011/06/P06007
http://dx.doi.org/10.1088/0953-8984/24/22/225304
http://dx.doi.org/10.1111/j.1749-6632.1971.tb34956.x
http://dx.doi.org/10.1111/j.1749-6632.1971.tb34956.x
http://dx.doi.org/10.1103/PhysRevLett.63.2144
http://dx.doi.org/10.1142/S0217984990000933
http://dx.doi.org/10.1103/PhysRevLett.20.1445
http://dx.doi.org/10.1103/PhysRevB.90.205410
http://dx.doi.org/10.1103/PhysRevB.90.205410


[22] M. Takahashi, Thermodynamics of One-Dimensional
Solvable Models (Cambridge University Press, Cambridge,
England, 1999).

[23] M. Takahashi, One-dimensional Hubbard model at finite
temperature, Prog. Theor. Phys. 47, 69 (1972).

[24] F. H. L. Essler, V. E. Korepin, and K. Schoutens, Complete-
ness of the SO(4) extended Bethe ansatz for the one-
dimensional Hubbard model, Nucl. Phys. B384, 431 (1992).

[25] T. Prosen, PT-Symmetric Quantum Liouvillean Dynamics,
Phys. Rev. Lett. 109, 090404 (2012).

[26] I. Fomin, P. Schmitteckert, and P. Wölfle, Comment on
“Pseudospin Symmetry and New Collective Modes of the
Hubbard Model, Phys. Rev. Lett. 69, 214 (1992).

[27] Z. Cai and T. Barthel, Algebraic versus Exponential
Decoherence in Dissipative Many-Particle Systems, Phys.
Rev. Lett. 111, 150403 (2013).

[28] Actually, the decay of the single particle functions
was derived in Ref. [12] for slightly different dissipators,
but a simple calculation for our model gives the same
result.

[29] N. Nagaosa, Quantum Field Theory in Strongly Correlated
Electronic Systems (Springer, New York, 1999).

[30] Y.-Y. Li, J. Cao, W.-L. Yang, K. Shi, and Y. Wang, Exact
solution of the one-dimensional Hubbard model with
arbitrary boundary magnetic fields, Nucl. Phys. B879, 98
(2014).

PRL 117, 137202 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

23 SEPTEMBER 2016

137202-6

http://dx.doi.org/10.1143/PTP.47.69
http://dx.doi.org/10.1016/0550-3213(92)90575-V
http://dx.doi.org/10.1103/PhysRevLett.109.090404
http://dx.doi.org/10.1103/PhysRevLett.69.214
http://dx.doi.org/10.1103/PhysRevLett.111.150403
http://dx.doi.org/10.1103/PhysRevLett.111.150403
http://dx.doi.org/10.1016/j.nuclphysb.2013.12.004
http://dx.doi.org/10.1016/j.nuclphysb.2013.12.004

