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We study the glass formation in two- and three-dimensional Ising and Heisenberg spin systems subject
to competing interactions and uniaxial anisotropy with a mean-field approach. In three dimensions,
for sufficiently strong anisotropy the systems always modulate in a striped phase. Below a critical strength
of the anisotropy, a glassy phase exists in a finite range of temperature, and it becomes more stable as the
system becomes more isotropic. In two dimensions the criticality is always avoided and the glassy phase
always exists.
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Introduction.—Pattern formation appears ubiquitously in
many different fields, spanning from micromagnetics to
high-Tc superconductivity, to biology and social sciences
[1–11]. The systems may differ quite substantially, but their
macroscopic phenomenology looks very similar, as well as
the coarse-grained models used to describe them [7,12].
Stripe phases emerge when the Gaussian part of the free
energy of soft modes has either isolated minima or a
Mexican-hat shape in reciprocal space. In the latter case,
the pattern emerges as a result of the spontaneous breaking of
the rotational symmetry [12]. Even in the complete absence
of disorder, the very same free energy can give rise to a self-
induced glass [13–20]. This result breaks down the common
wisdom that minima in reciprocal space necessarily imply a
stripe order in real space. At a first sight, patterns look
completely chaotic, but a careful analysis reveals a hidden
structure. For a Mexican-hat free energy, the glass emerges
as a superposition of stripe patterns with fixed periodicity
but arbitrary direction. [15,21] The direction is not com-
pletely arbitrary when the free energy has only isolated
minima, and the period is not fixed when the line of minima
has a noncircular shape. The hidden structure is revealed by
analyzing the structure factor [12,21].
It is important to understand which properties lead to the

formation of ordered and random patterns. Frustration, due
to the impossibility to locally fulfill at the same time all
constraints, plays a fundamental role [22]. It can arise in
multiple ways. Ising spins antiferromagnetically coupled
and arranged in a triangular lattice are a classical example
[23]. It is impossible to minimize the energy by looking
at each plaquette, because of the freedom to arrange one of
the three spins without changing the total energy. The
minimum-energy configurations are found only by con-
sidering the whole system at the same time [22,24]. The
ground state turns out to be massively degenerate, because
of the freedom to flip a fraction of the total number of spins
(up to 1=3 in the case of the triangular lattice) without
changing the total energy [23]. A similar situation is

realized in J1 − J2 antiferromagnetic models at special
values of the ratio J1=J2 [25–31].
Geometrically frustrated systems, although extremely

interesting, exhibit a very complicated phenomenology
[23,25–33]. Therefore, they do not offer the simple play-
ground that allows us to highlight the general features of
pattern formation and self-induced glassiness. We focus
instead on D-dimensional systems of spins arranged in
nonfrustrated lattices and subject to competing interactions
[4,6,12,21,34–37]. Nearest-neighbor spins are ferromag-
netically coupled and each spin interacts with the others by
a long-range interaction. The energy dispersion of these
systems exhibits a peculiar D-1-dimensional surface of
minima, which turns out to be important for the emergence
of a glassy phase [21]. The wave vectors that lie in the
minimum-energy surface correspond to equivalent striped
phases. The potential landscape in the space of configu-
ration is extremely “rough” and exhibits an exponential
number (in the number of lattice sites) of local minima [38].
The large number of metastable states compensates for their
small Boltzmann weight [22]. In such systems a glass phase
emerges in a certain interval of temperatures or in-plane
magnetic fields [21]. Such phase is characterized by the
presence of an anomalous Green’s function (off-diagonal in
replica space), and a finite configurational entropy.
Anisotropies lift the degeneracy of the surface of minima.

The glass is not necessarily destroyed but the formation of
ordered patterns may be favored. Hence, a phase transition
may occur below a certain temperature [15]. To reduce the
model to itsminimum,we consider the following free-energy
for D ¼ 2, 3:

F ¼ 1

2

X
q

G−1
0 ðqÞsq · s−q þ i

X
i

σiðs2i − 1Þ; ð1Þ

where sq ¼
P

ie
iq·risi, si is anNs-component spin located at

site i ¼ 1;…; NL; σi is a slave field (Lagrange multiplier)
that ensures that si ≡ jsij ¼ 1. This is at odds with previous
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works [15–17,20] which considered a ϕ4 type of constraint.
Throughout this Letter, energies are measured in units
of JqD−2

0 (J is the exchange parameter). Finally,
G−1

0 ðqÞ ¼ qD0 ðq2=q20 − 1Þ2=4þ qD0 ε
2
0sin

2ðθqÞ. The line of
minima is located at jqj ¼ q0, while the term proportional
to ε20 introduces an “easy-axis” anisotropy. θq is the angle
formed with the x̂ (ẑ) axis for D ¼ 2 (D ¼ 3). When ε0 ≠ 0
the degeneracy of the minima is lifted: the system prefers
to order in a striped phase with momentum q0 ¼ �q0x̂
(q0 ¼ �q0ẑ) for D ¼ 2 (D ¼ 3). In the absence of
anisotropy, our model reduces to the Brazovskii model
[39], which correctly describes the physics of self-induced
glassiness in spin systems subject to competing interactions
[16]. Other model-dependent features are lost in this
approximation. Although very simplified, our model cor-
rectly describes the impact on the glassy phase of the easy-
axis anisotropy, which represent the true novelty of ourwork.
The reader may now argue that the different shapes of the

line of minima, chosen in Eq. (1) to be a circle, might lead
to qualitatively different behaviors. Within the mean-field
theory used in this Letter [40], the shape is an irrelevant
detail and the choice of a circle does not undermine the
generality of our results. On the other hand, nonlocal
corrections to the self-energy [41,42] may in principle
depend on the shape of the line of minima and, e.g., lift
the degeneracy of the minima even in the absence of
anisotropy. The study of these corrections is beyond the
scope of this Letter.
The energy dispersion around the isolated minima is

quadratic, i.e., G−1
0 ðqÞ ∝ jq − q0j2. This is sufficient to

introduce a pattern in the three-dimensional case, but not in
two dimensions. In the latter case a phase transition can
occur only when the energy dispersion around the isolated
minima goes as jq − q0jα with α < 2. In this case the same
phenomenology of the 3D case applies.
This Letter is organized as follows. In the next section we

give all the details of the analytical solution of the problem.
We then show and discuss in a separate section the
numerical solution, pointing out the differences between
the two- and three-dimensional cases. Finally, we conclude
the Letter by summarizing the results and discussing future
perspectives and applications of our work.
Mean-field approach to self-induced glassiness.—The

problem of self-induced glassiness has been the subject of a
few works [15–17,21]. We therefore discuss only briefly
the general strategy, and we go straight to the heart of
the problem at hand. To study the self-induced glassiness,
we introduce in the Hamiltonian (1) a Ns-component
symmetry-breaking field ψðrÞ, which “glues” the spins
to a given configuration [15,21]. The strength of the
coupling between spins and ψðrÞ, g, tends to zero after
the thermodynamic limit is taken. The resulting free energy
Fψ is analogous to that of a spin system subject to an
infinitesimal quenched disorder [18]. Introducing replicas,
we average over the configurations of ψðrÞ. In the spirit of

self-induced glassiness, the free energy Fψ is averaged
with a probability distribution induced by itself, i.e.,
P ∼ e−βFψ [15,21]. The averaged Hamiltonian has the
form (1) where the fields are now replicated, i.e.,
sq → sαq and σi → σαi (α ¼ 1;…; N denotes replica indices),
and the bare Green’s function acquires infinitesimal off-
diagonal elements in replica space (∝ g).
The slave field σi introduces an interaction between

spins at different wave vectors q. It is precisely this
interaction which induces finite off-diagonal components
of the Green’s function (in replica space), when the latter is
calculated nonperturbatively. [21] This is analogous to what
happens, e.g., in the theory of superconductivity: a finite
anomalous Green’s function emerges when Eliashberg’s
equations are solved self-consistently [43].
Owing to the local form of the interaction and in a mean-

field spirit, we assume the self-energy to be a local quantity
and to have a simple form in replica space: ~Σ ¼ ΣKδαβ þ ΣF.
ΣG ≡ ΣK þ ΣF (ΣF) is its normal (anomalous) component
in replica space. In turn, the full Green’s function reads
~GαβðqÞ¼KðqÞδαβþFðqÞ, whereKðqÞ¼½G−1

0 ðqÞþqD0 ΣK�−1
and NFðqÞ ¼ ½G−1

0 ðqÞ þ qD0 ðΣK þ NΣFÞ�−1 − KðqÞ. The
self-energy is calculated by mapping the full model into
the local problem [17],

Hloc ¼
1

2

X
α;β

Δαβsα · sβ þ i
X
α

σαðs2α − 1Þ; ð2Þ

where Δαβ ¼ ΔKδαβ − ΔF. The Green’s functions of the
local problem reads Ḡαβ¼K̄δαβþF̄, where K̄¼½ΔKþΣK�−1
and NF̄ ¼ ½ΔK − NΔF þ ΣK þ NΣF�−1 − K̄. These are
related to the Green’s function of the full model by the
mean-field relation

P
q
~GαβðqÞ ¼ Ḡαβ. These equations

determine ΔK and ΔF as a function of ΣK and ΣF. It is
clear that, since Ḡαβ is related to the integral of ~GαβðqÞ over
all q, the shape of the line of minima is not important (as long
as it is smooth). In the limitN → 1 the mean-field equations
lead toΔK ¼−ΣKþI−1ðΣKÞ andΔF¼ΔKþΣG−I−1ðΣGÞ,
where

IðxÞ ¼
8<
:

1
π

R π=2
0

dφ
½xþε2

0
sin2ðφÞ�1=2 for D ¼ 2

1
2πε0

arctan
�

ε0ffiffi
x

p
�

for D ¼ 3
: ð3Þ

Note that the integral on the first line can be expressed in
terms of full elliptic integrals.
We now derive the self-consistent equations which

describe the mean-field glass transition. The partition
function of Hamiltonian (2) is rewritten as

ZðNÞ ¼
Z

∞

0

dλWNs
ðλÞΩNðλÞ; ð4Þ
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whereWNs
ðλÞ ¼ ωNs

λNs−1e−λ
2=ð2βΔFÞ=ð2πβΔFÞNs=2, ωNs

¼
2πNs=2=ΓðNs=2Þ is the solid angle in Ns dimensions, ΓðxÞ
is the Euler gamma function, and

ΩðλÞ ¼
Z

dNsse−½βΔKs2þ2λs cosðθÞ�=2δðs2 − 1Þ: ð5Þ

Therefore, ΩðλÞ ¼ 2e−βΔK=2 coshðλÞ for Ns ¼ 1, ΩðλÞ¼
2πe−βΔK=2I0ðλÞ for Ns¼ 2, and ΩðλÞ¼4πe−βΔK=2sinhðλÞ=λ
for Ns ¼ 3. Here I0ðxÞ is the modified Bessel
function of the first kind. In the limit N → 1 we
get Zð1Þ ¼ ωNs

e−βðΔK−ΔFÞ=2. From the equalities
NsðK̄ þ F̄Þ ¼ −ð2=NÞ∂ lnZðNÞ=∂ΔK and NsðK̄þNF̄Þ¼
ð2=NÞ∂ lnZðNÞ=∂ΔF, in the limit N → 1 we get the
following self-consistent equations:

K̄ þ F̄ ¼ ðNsTÞ−1; ð6aÞ

F̄ ¼
Z

∞

0

dλ
WNs

ðλÞ
NsTZð1Þ

lnΩðλÞ
�

λ

βΔF

∂ΩðλÞ
∂λ −ΩðλÞ

�

≡ F̄½J ðΣFÞ þ 1�; ð6bÞ

which allow us to determine the normal (ΣG) and anoma-
lous (ΣF) components of the self-energy as a function
of the temperature T and anisotropy parameter ε0. For
future purposes, in Eq. (6b) we have introduced the
function J ðΣFÞ, which is defined in terms of the integral
on its first line. In solving these equations we have to
require ΔF > 0. The mean-field configurational entropy is
determined from the free-energy F̄ ðNÞ ¼ −ðT=NÞ lnZðNÞ
as S̄c ¼ ð1=TÞlimN→1∂F ðNÞ=∂N. It reads

S̄c ¼ ln½eΔK=2Zð1Þ� − 1

Zð1Þ
Z

∞

0

dλWNs
ðλÞΩðλÞ

×

�
ln½ΩðλÞ� þ ∂ lnWNs

ðλÞ
∂ΔF

∂ΔF

∂N
����
N→1

�
: ð7Þ

The derivative of ΔF is found by considering the equality

X
q

FðqÞ ¼ 1

N
½IðΣK þNΣFÞ− IðΣKÞ�

¼ 1

N

�
1

ΔK −NΔF þΣK þNΣF
−

1

ΔK þΣK

	
: ð8Þ

Since the derivative is taken at fixed FðqÞ,
∂FðqÞ=ð∂NÞ ¼ 0. Differentiating both lines of Eq. (8) and
setting them equal to zero we determine ∂ΣF=ð∂NÞ and
∂ΔF=ð∂NÞ. The final expressions are quite cumbersome
and will not be reported here.
Results.—We now consider Eqs. (6) more closely. Using

the definitions of ΔK and ΔF given after Eq. (3), we rewrite
Eq. (6a) as IðΣGÞ ¼ ðNsTÞ−1. Since IðxÞ is a monoton-
ically decreasing function, Eq. (6a) admits at most one

solution for every temperature T (at fixed ε0). Therefore,
the value of ΣG is uniquely determined for any T and ε0.
However, while in the two-dimensional case the function
IðxÞ diverges for x → 0, in three dimensions it reaches a
finite value which scales as the inverse of the asymmetry
parameter [compare Figs. 1(a) and 1(b), main panels].
Therefore, in three dimensions there exists a transition
temperature Tp such that Eq. (6a) can have a solution
only for T > Tp. For T < Tp the system orders in a striped
phase. The stronger the asymmetry, the higher is Tp.
Conversely, our model for D ¼ 2 has a transition temper-
ature Tp ¼ 0.
The different behavior can be traced back to the fact that,

for finite ε0, the energy dispersion around the minima is
quadratic and the mean-field equations are obtained by
integrating the Green’s functions ~GαβðqÞ over all momenta.
Since a 1=q2 divergence is integrable in three dimensions
but not in two dimensions, Iðx → 0Þ converges to a finite
value in three dimensions and diverges whenD ¼ 2. This is
a situation of “avoided criticality” [15,44,45]. The diver-
gence in three dimensions is restored only in the isotropic
case (ε0 ¼ 0), when the minima have an infinitely soft
direction. Conversely, in two dimensions a phase transition
to an ordered phase occurs if the energy dispersion goes as
∼qα with α < 2 around the minimum or if the dispersion is

FIG. 1. Panel (a) the function IðΣGÞ for the two-dimensional
Ising model (D ¼ 2 and Ns ¼ 1), plotted as a function of ΣG and
for three values of the anisotropy parameter ε0. The function
always diverges in the limit ΣG → 0. Inset: the function J ðΣFÞ
for ε0 ¼ 0.01 and T ¼ 0.25. It clearly shows two zeros. Panel
(b) same as panel (a) but for the three-dimensional Ising model
(D ¼ 3, Ns ¼ 1). Note that, unless ε0 ¼ 0, the function always
converges to a finite value, which defines the minimum temper-
ature Tcrit below which the system undergoes a phase transition to
the ordered phase. Inset: the function J ðΣFÞ for ε0 ¼ 0.01
and T ¼ 2.5.
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not isotropic (e.g., quadratic in one direction and linear in
the other).
Equation (6b) defines also a temperature TA above which

only the liquid phase can exist. We find no qualitative
differences between the Ising, xy, and Heisenberg models.
Below TA, Eq. (6b) admits two solutions for ΣF. In the
insets of Figs. 1(a) and 1(b) we show the function J ðΣFÞ
for the 2D and 3D Ising models, respectively. Its zeros
correspond to the values of ΣF solutions of Eq. (6b). Above,
TA no solution can be found and ΣF ¼ 0.
In Fig. 2 we address the stability of the two-dimensional

Ising and Heisenberg glasses. From Eqs. (6a)–(6b) we
calculate the liquid-glass transition temperature TA at
which Eq. (6b) has only one solution. This is achieved
by adding a third equation to the set, obtained by requiring
the derivative of Eq. (6b) to vanish at TA. The results for the
two models are shown in the insets of Figs. 2(a) and 2(b).
Note that the transition temperature increases with the
anisotropy parameter ε0. As the isolated minima become
deeper, higher temperatures are needed to introduce defor-
mations and defects in the regular pattern. Note also that the
glass becomes more “fragile”: The configurational entropy
at the glass-liquid transition point (where it is maximum)
decreases.
We quantify the fragility of the glass by calculating

the configurational entropy of the mean-field problem S̄c.
This is shown in the main panels of Fig. 2(a) and 2(b) for
the two-dimensional Ising and Heisenberg models, respec-
tively. The configurational contribution to the entropy

decreases with increasing ε0. This is expected, since the
number of equivalent configurations should drastically
decrease when the uniaxial anisotropy is introduced and
the system is “forced” to assume a more ordered state.
We stress again that the presence of a finite number of

soft minima in momentum space is sufficient to avoid the
“critical behavior” and the formation of an ordered phase
in two dimensions. Therefore, at the mean-field level, the
replica symmetry is always broken and a glass can always
form. It is, however, well known that beyond-mean-field
fluctuations can have a dramatic impact in two-dimensional
systems. They can, in principle, destabilize the glassy phase
and lead to transitions to other phases. We expect the
reduction in the value of the configurational entropy,
already observed at the mean-field level, to become even
more dramatic in the presence of fluctuations. A careful
study of their role is beyond the scope of the present Letter.
Finally, we note that the glassy phase is much more

stable in the three-dimensional case, below the critical

value of the anisotropy parameter εðcritÞ0 . Indeed, the liquid-
glass transition temperature and especially the configura-

tional entropy remain nearly constant for 0 < ε0 < εðcritÞ0 ,
i.e., TA ¼ 2.96 (TA ¼ 0.51) and S̄c ¼ 0.17 (S̄c ¼ 0.66) for

Ns ¼ 1 (Ns ¼ 3). Beyond the critical value εðcritÞ0 no glass
can be realized and a transition to an ordered state always
occurs, starting from the disordered (liquid) phase. We find

that εðcritÞ0 ¼ 0.33 (εðcritÞ0 ¼ 0.24) for the three-dimensional
Ising (Heisenberg) model.
Summary and conclusions.—In this Letter we studied

the glass formation in the two- and three-dimensional
anisotropic Brazovskii model, which mimics spin systems
subject to competing short- and long-range interactions
around the glass-liquid transition point. We analyzed within
a mean-field framework the role of uniaxial anisotropy,
which lifts the degeneracy of the line of minima in
momentum space, leaving the system with few isolated
ones. We find qualitative differences between the two- and
three-dimensional cases. While in the former one criticality
is avoided and a glass can always form, the latter undergoes
a glass-ordered phase transition below a certain temper-
ature. This result can be traced back to the softness of the
energy dispersion around the minima. Moreover, as the
anisotropy is increased, the glass becomes more fragile
and its configurational entropy decreases. Indeed, the
number of equivalent configurations decreases (although
it remains exponentially diverging in the mean-field limit
and above the ordering temperature) and the energy land-
scape in the configuration space to smoothen. This findings
are in agreement with previous renormalization-group
calculations [46,47].
The same phenomenology is expected to emerge in very

different models, spanning from statistical physics, to
information theory, biology, and social sciences [1–19].
In particular, we believe it to be relevant for the description

FIG. 2. Panel (a) the configurational entropy of the mean-field
problem for the two-dimensional Ising model (D ¼ 2 and
Ns ¼ 1). Note that this curve has been multiplied by a factor
0.1. Inset: the transition temperature TA as a function of the
anisotropy parameter ε0. Panel (b) same as panel (a) but for the
two-dimensional Heisenberg model (D ¼ 2, Ns ¼ 3). Inset:
the temperature TA as a function of ε0.
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of structural glasses of, e.g., hard spheres when the rota-
tional symmetry in momentum space is broken [19,48–51].
Further investigation is needed to compare our results with
those known in literature. It is, however, very promising
that these models, in the isotropic case, exhibit a line of
minima in momentum space [19], and can therefore be
regarded as “stripe glasses.”
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