
Correlation-Enhanced Odd-Parity Interorbital Singlet Pairing in the Iron-Pnictide
Superconductor LiFeAs

R. Nourafkan,1 G. Kotliar,2 and A.-M. S. Tremblay1,3
1Département de Physique and Institut quantique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada

2Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA
3Quantum Materials Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada

(Received 22 June 2016; published 20 September 2016)

The rich variety of iron-based superconductors and their complex electronic structure lead to a wide
range of possibilities for gap symmetry and pairing components. Here we solve in the two-Fe Brillouin
zone the full frequency-dependent linearized Eliashberg equations to investigate spin-fluctuations mediated
Cooper pairing for LiFeAs. The magnetic excitations are calculated with the random phase approximation
on a correlated electronic structure obtained with density functional theory and dynamical mean field
theory. The interaction between electrons through Hund’s coupling promotes both the intraorbital dxzðyzÞ
and the interorbital magnetic susceptibility. As a consequence, the leading pairing channel, conventional
sþ−, acquires sizable interorbital dxy − dxzðyzÞ singlet pairing with odd parity under glide-plane symmetry.
The combination of intra- and interorbital components makes the results consistent with available
experiments on the angular dependence of the gaps observed on the different Fermi surfaces.
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LiFeAs is a stoichiometric superconductor with super-
conducting Tc ≃ 18 K and no magnetic ordering [1].
Despite rather poor nesting [2–5], recent quasiparticle inter-
ference experiments identify the antiferromagnetic (AF)
spin-fluctuation mediated mechanism as the predominant
pairing interaction [6]. ARPES and quasiparticle-scattering
interference measurements below Tc show that the super-
conducting (SC) gaps of LiFeAs are nodeless, with a Fermi
surface (FS) dependence and a sizable variation along each
FS [2,7,8]. Polarized neutron diffraction as a function of
temperature has shown a suppression of the local spin sus-
ceptibility in the SC phase, suggesting singlet pairing [9,10].
In theoretical studies, the AF spin-fluctuation mediated

pairing [11–14] and a combination of AF spin fluctuation
and orbital fluctuation mediated by phonons have been
investigated [15,16]. However, all studies are performed in
the one-iron unit cell with various unfolding algorithms
used to embed the correct symmetry [17–21]. This pro-
cedure is exact only for computing in-plane pairing. In
addition, the SC gap equation is usually projected on the
FS, the pairing interaction is symmetrized [11], and the
resulting equation is always solved in the BCS approxi-
mation. All of the above simplifications must be questioned
before we can be confident of the results. Furthermore, for
Fe-based superconductors (FeSCs) with a nonsymmorphic
point group [22], antisymmetry of fermions does not
place a constraint on the parity of the SC pairing channel
[23,24]. This allows for even-parity dxz − dyz interorbital
pairing [25], or for dxy − dxzðyzÞ odd-parity spin singlet
pairing when there is orbital weight at the Fermi level from
orbitals with different in-plane mirror reflection sym-
metry [26].

Hence, here we revisit spin-fluctuation mediated pairing
by considering both Fe-3d and As-4p orbitals in the two-Fe
unit cell. We solve the linearized Eliashberg equations [27]
in the two-Fe Brillouin Zone (BZ) to investigate SC pairing
and gap symmetry. Since there is increasing evidence that
superconductivity does not emerge as a FS instability [40],
we work in the orbital representation instead of projecting
the gap equation on the FSs. Our results show that in
the leading channel, with the conventional sþ− symmetry,
odd-parity interorbital pairing accompanies the usual intra-
orbital pairing and increases with interactions, in particular,
with Hund’s coupling. In contrast to previous studies
[8,11–13] we find that this state can reproduce the angular
dependence of the gap on the electron pockets.
Electronic structure.—In LiFeAs, the bandwidth

observed in ARPES is narrower than in LDA calculations
and there are experimental evidences of long-lived
magnetic moments [9]. This indicates the importance of
correlations, so we employ the LDAþ DMFT method to
obtain the electronic structure [41–43]. Figure 1 illustrates
the LDAþ DMFT partial spectral weight, Allðk; 0Þ, of Fe
t2g- orbitals dxy and dxz;yz on the FSs of LiFeAs [44]. The
Fe eg orbitals dz2 and dx2−y2 hybridize with As-p orbitals
and contribute to the spectral weight lying above and below
the Fermi level. The FS consists of three holelike and two
electronlike sheets around the center and corners of the BZ,
respectively. The two inner hole pockets are predominantly
composed of dxz and dyz orbitals. The smallest hole pocket
crosses the Fermi level only in close vicinity to the Γ point.
It hybridizes with the dz2 orbital near the Z point and is
closed there, while remaining two dimensions away from
this point. The middle pocket has moderate kz dispersion.
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The large holelike Fermi surface originates purely from in-
plane dxy orbitals and therefore is two-dimensional without
noticeable kz dispersion. The electron pockets are made
from an admixture of dxy, dxz, and dyz orbitals. The electron
pockets intersect at small kz and their order flips; i.e., the
inner pocket at kz ¼ 0 is the outer pocket at kz ¼ π=c.
Comparison to LDA [27] shows that in LDAþ DMFT

(a) the two inner hole pockets shrink while the outer one
expands. (b) The middle hole pocket also deforms and
takes on a butterfly shape at small kz [45]. (c) At finite kz,
the outer hole pocket acquires some dxz and dyz orbital
weight in the direction of the A point. (d) The shrinkage of
the two inner hole pockets leads to larger patches where dxz
and dyz orbitals mix on these pockets. (e) The electron
pockets are moderately expanded and they become closer
to each other [27].
The t2g orbitals are the most strongly correlated [43,45]

as is apparent from the mass enhancements m�=mLDA ¼
2.0, 1.85, 3.13, and 2.7 for dz2, dx2−y2 , dxy, and dxz;yz
orbitals, respectively. The dxy orbital has the strongest mass
enhancement and shortest quasiparticle lifetime.
Effective pairing interaction.—A SC instability in the

singlet channel occurs when the corresponding pairing
susceptibility diverges as one lowers temperature. A
divergent susceptibility signals the appearance of a pole
in the corresponding reducible complex vertex function,
which describes all scattering processes of two propagating
particles. Using the Bethe-Salpeter equation, the condition
for an instability is that an eigenvalue of the matrix
−Γirr;sχ 0pp becomes unity. Here Γirr;s is the irreducible
vertex function (effective pairing interaction) in the singlet
channel, and χ 0pp is the bare susceptibility in the particle-
particle (p-p) channel [27,46,47].
The density and magnetic fluctuations contribute to the

pairing interaction by entering the ladder vertex defined
by Πph≡−ð1=2ÞΓirr;dχ dphΓ

irr;dþð3=2ÞΓirr;mχmphΓ
irr;m where

χmðdÞ
ph and Γirr;mðdÞ denote respectively the dressed suscep-

tibility and the irreducible vertex function in the magnetic
(density) channel [27]. These vertices can be calculated in
the DMFTapproximation [48]. However, such a calculation
is prohibitively difficult for multiorbital systems at the low
temperatures necessary to study superconductivity [27];
hence, here we employ the random phase approximation
(RPA) [49]. In the RPA, the irreducible vertex function is
replaced by a static effective vertex that is parametrized
by the screened intraorbital Hubbard interaction, Us, and
the Hund’s coupling Js [16,27,50,51]. The interorbital
interaction and pair hopping are determined assuming
spin-rotational symmetry. Note that even though the static
effective vertices Us and Js capture Kanamori-Brückner
screening effects, they do not fully capture the dynamics of
screening. In particular, the RPA treatment misses the fact
that at high fermionic frequencies one should recover the
bare interactions.
Figure 2 shows the pairing interaction, Πph, at kBT ¼

0.01 eV for two sets of screened interaction parameters that
yield the same magnetic Stoner factor [52]. Here we only
present the intrasublattice components because the inter-
sublattice components are relatively small. In what follows,
we focus on the Fe-1 and Fe-2 (on A and B sublattices,
respectively) t2g orbitals: dxy is referred to as 2 (7) and dxz
and dyz orbitals as 4 (9) and 5 (10). The dominant effective
pairing interaction components are repulsive. As can be
seen in Fig. 2(a), due to better nesting, the dxy intraorbital
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FIG. 1. Partial spectral weight, Allðk; 0Þ, of Fe t2g- orbitals on
the FS in the kx-ky plane with kz ¼ 0 (left) and kz ¼ π=c (right)
obtained from the LDAþ DMFT calculation. Here the dxy, dxz,
and dyz orbitals are illustrated by green, blue, and red colors,
respectively. The α1 pocket crosses the Fermi level only in close
vicinity to the Γ point (not visible on this scale).
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FIG. 2. Several components of the pairing interaction of
LiFeAs at kBT ¼ 0.01 eV in the particle-hole channel. There
are two sets of screened interaction parameters yielding the same
magnetic Stoner factor, namely, Js ¼ 0.1Us, Us ¼ 2.4 eV on the
top and Js ¼ 0.3Us,Us ¼ 1.68 eV on the bottom. The legend for
the color coding is spread over both figures.
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(22;22) pairing vertex is dominant and the dxzðyzÞ intra-
orbital (44;44) is subdominant, yet on average it is larger
than interorbital vertices (22;44) and (44;55).
However, at larger Js=Us the situation changes. For a

fixed Stoner factor (proximity to magnetic transition) upon
increasing the Js=Us ratio from Fig. 2(a) to Fig. 2(b), the
dxy intraorbital pairing component decreases while the
dxzðyzÞ intraorbital components and the interorbital compo-
nents increase slightly. This shows that a higher Js, through
coupling to the more correlated dxy orbital, compensates
the decrease of spin susceptibility expected from the lower
Us [Fig. 2(b)] [27]. Furthermore, since Hund’s coupling
correlates different orbitals, the interorbital components
increase, becoming comparable with the dxzðyzÞ intraorbital
components. The dxy intraorbital vertex becomes less
dominant at larger Js=Us [53]. This behavior of the
magnetic susceptibility reflects itself directly in the pairing
interaction (see Supplemental Material [27] for the dressed
susceptibilities in magnetic and charge channels).
Bare particle-particle susceptibility.—The generalized

bare susceptibility in the p-p channel also enters the gap
equation [27]. Figure 3 shows the real part of several
components of the generalized p-p bare susceptibility at
the lowest fermionic and bosonic frequencies. The intra-
orbital components are purely real. Both real and imaginary
parts (see Supplemental Material) show peaks at the
position of FSs. For example, going from the Γ to the
X point in the top panel, the three peaks are respectively
related to the inner hole pocket with dxz weight in close
proximity to Γ, the middle pocket with dyz weight, and the
outer pocket with dxy weight. The peak heights are directly

proportional to the corresponding orbital weight on the FSs
and inversely proportional to the Fermi velocity. The peak
widths are induced by correlation effects, implying that
electrons near FSs may contribute to the Cooper pairing. In
a noninteracting system the peak widths go to 0 at zero
temperature [54]. The larger 22;22 peak component in the
M − Γ direction, compared with the M − XðYÞ direction,
indicates that the SC gap on the outer electron pocket is
larger in the M − Γ direction.
In the BCS approximation, only real parts survive for the

components considered here, due to a summation over
Matsubara frequencies. In this case, the interorbital pairing
is suppressed. Including the imaginary part in the full gap
equation changes this trend. The imaginary parts of the
interorbital components change sign between the corner
and center of the BZ. They have some symmetries that
transfer to the gap function: (i) They are odd under
exchange of orbital indices; i.e., there is also a π phase
difference between the two Fe ions (see Supplemental
Material).
SC pairing symmetry in LDAþ DMFTþ RPA.—The

leading pairing channel is a channel with dominant dxy, dxz,
and dyz intraorbital pairing. In our gauge, the gap function
components have both real and imaginary parts that satisfy

ReΔAAðBBÞ
ll ¼ −ImΔAAðBBÞ

ll . All intraorbital components
change sign between the center and corner of the BZ
(see Fig. 4), as expected in conventional sþ− pairing. The
dxy intraorbital component dominates, but has a small value
on the γ pocket. The dxz and dyz intraorbital components

are out of phase, i.e., ΔAAðBBÞ
55 ≃ −ΔAAðBBÞ

44 (not shown).
They take large values on the α1;2 hole pockets. The
intersublattice components are much smaller than intra-
sublattice ones, ΔAAðBBÞ ≫ ΔABðBAÞ. The largest intersu-
blattice component is ΔAB

22 . In the orbital basis, the gap
functions do not change much between kz ¼ 0 and
kz ¼ π=c; hence, we present only kz ¼ 0 results.
In agreement with the above pairing-interaction analysis,

upon increasing Js=Us the dxz=yz intraorbital pairing
strengthens. Furthermore, the dxy-dxz and dxy-dyz interor-
bital pairings increase. Although they vary on a smaller
interval, they are comparable with the dxz=yz intraorbital
components on the electron FSs (compare Fig. 4’s top and
bottom panels).
We verify that the gap function components of the leading

channel satisfy the relations ΔAAðBBÞ
l1l2

ðk; iωmÞ ¼ ΔBBðAAÞ
l1l2

ð−k; iωmÞ, andΔAAðBBÞ
l1l2

ðk;iωmÞ¼ΔAAðBBÞ
l2l1

ð−k;−iωmÞ [55].
The first relation says that the superconducting state does not
break parity: In LiFeAs the inversion center is located in the
middle of Fe-Fe link. Under parity operation the sublattice A
maps to sublattice B and vice versa and k → −k. The
components of the gap function also satisfy the relation

ΔAAðBBÞ
l1l2

ðkx; ky; iωmÞ ¼ pl1pl2Δ
BBðAAÞ
l1l2

ðkx; ky; iωmÞ, where
pl denotes the parity of orbital l with respect to in-plane
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FIG. 3. Real part of the several intrasublattice components of
the generalized particle-particle bare susceptibility at the lowest
fermionic and bosonic Matsubara frequency.
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mirror reflection symmetry [56]. This symmetry is defined by
in-plane mirror reflection followed by a half-translation,
expressed in units of the two-Fe unit cell, fσzj 1

2
1
2
0g. Thus,

the intraorbital components on the two Fe are equal, while the
interorbital components between one even-parity (dxy) and
one odd-parity (dxz, dyz) orbital change sign between two Fe
ions. These components are the parity-odd under fσzj 1

2
1
2
0g

spin singlet pairings [26]. Furthermore, as can be seen
from Fig. 4, the in-plane intraorbital components satisfy

ΔAAðBBÞ
ll ðkx; kyÞ ¼ ΔAAðBBÞ

ll ð−kx;−kyÞ, while the interorbital
componentsbetweendxy anddxzðyzÞ satisfyΔ

AAðBBÞ
l1l2

ðkx; kyÞ ¼
−ΔAAðBBÞ

l1l2
ð−kx; kyÞ orΔAAðBBÞ

l1l2
ðkx;kyÞ¼−ΔAAðBBÞ

l1l2
ðkx;−kyÞ.

Our calculations show that the gap symmetry of the
leading channel is conventional sþ−. Indeed, although there
is a phase difference between the dxz and dyz components of
the gap function in the orbital basis, this phase difference is
removed by another phase difference that arises when
going to the Bloch basis corresponding to the α1;2 pockets
[27]. In the subleading pairing channel, the dxy intraorbital
component is in phase with dyz and out of phase with dxz
intraorbital components, which in the band representation
gives sþ− gap symmetry with a sign change between α1;2
and γ pockets and between electron pockets and accidental
nodes on the β2 pocket [14].

Finally, we comment on the SC gap magnitude on
different FSs [57]. Diagonalizing the Bogoliubov quasi-
particle Hamiltonian leads to a gap magnitude that has
predominant cos 4θ angular dependence on all pockets, as
can be seen from Fig. 5. The angular dependence of the gap
on the γ and of the average gap on the β1;2 pockets is
consistent with ARPES data: The gap is maximum at
θ ¼ 0, π=2 and decreases when approaching θ ¼ π=4 (the
direction toward the M point) on the γ pocket, while the
average gap is maximum at θ ¼ π=4 (direction toward
the Γ point) on the β pockets and decreases when
approaching θ ¼ 0, π=2 where the two pockets cross.
The gap on the β2 electron pocket is increased in the
direction of the Γ point due to a larger dxy orbital content
with a large pairing amplitude (see Fig. 4, upper panels).
The gap on the β1 electron pocket also shows a local
enhancement at θ ¼ π=4. Because of interchange of elec-
tron pockets as a function of kz, the gap on the inner pocket
becomes larger than that on the outer pocket at a finite kz.
Hence, for these pockets, a direct comparison with ARPES
data has to take averaging over a range of kz into account
[58]. The ratio between the average gap magnitude on the β
pockets and γ pocket is also consistent with ARPES results
[7,8]. However, the gap magnitude on the α pockets is not
the largest. This discrepancy with ARPES results may
come from the fact that ARPES is performed at very low
temperature while the linearized Eliashberg gap equation is
valid at temperatures infinitesimally close to the transition
temperature. The tunneling spectroscopy study of LiFeAs
has shown a temperature evolution of superconductivity
[59]. A calculation at a lower temperature shows that the
sharp peaks in the 44 and 55 bare paring susceptibilities,
Fig. 3(a), grow faster than the wider peak for 22. This leads
to an increase of the gap on the α pockets at lower
temperatures.
Conclusion.—Solving the full linearized Eliashberg gap

equation with both real and imaginary parts and including
correlations in the LDAþ DMFT framework leads to a
detailed description of the leading pairing channel in
LiFeAs. Accounting for correlations in the spin-fluctuation
approach allows us to correctly capture not only nesting
effects but also Fe-d orbital fluctuating moments with
orbitally dependent dynamics. Although the intraorbital dxy
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spin susceptibility is dominant, Hund’s coupling between
orbitals on individual Fe atoms promotes both the intra-
orbital dxzðyzÞ component and the interorbital dxy − dxzðyzÞ
components of the magnetic susceptibility. As a conse-
quence, the leading paring channel, conventional sþ−,
acquires an interorbital singlet pairing component with
odd parity under glide-plane symmetry. This type of pairing
may also be realized in other iron-based superconductors.
Antiphase sþ− pairing [14] is subleading. The combination
of interorbital odd-parity and intraorbital even-parity sin-
glet pairing leads to a description of the angle dependence
and of the relative magnitudes of the gap on the β and γ
Fermi surfaces that is consistent with state of the art
experiments.
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