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We demonstrate that topological Dirac semimetals, which possess two Dirac nodes, separated in
momentum space along a rotation axis and protected by rotational symmetry, exhibit an additional quantum
anomaly, distinct from the chiral anomaly. This anomaly, which we call the Z2 anomaly, is a consequence
of the fact that the Dirac nodes in topological Dirac semimetals carry a Z2 topological charge. The Z2

anomaly refers to nonconservation of this charge in the presence of external fields due to quantum effects
and has observable consequences due to its interplay with the chiral anomaly. We discuss possible
implications of this for the interpretation of magnetotransport experiments on topological Dirac
semimetals. We also provide a possible explanation for the magnetic field dependent angular narrowing
of the negative longitudinal magnetoresistance, observed in a recent experiment on Na3Bi.

DOI: 10.1103/PhysRevLett.117.136602

The recent theoretical [1–9] and experimental [10–15]
discoveries of Weyl and Dirac semimetals have extended
the growing family of materials with topologically non-
trivial electronic structure. They have also highlighted
beautiful analogies and connections that exist between
the physics of materials with a topologically nontrivial
electronic structure and the physics of relativistic fermions,
described by the Dirac equation, which were anticipated
some time ago by Volovik and others [16–19].
The chiral anomaly, which refers to nonconservation of

the chiral charge in the presence of collinear external electric
and magnetic fields, is a particularly striking and important
example. First discovered theoretically by Adler [20] and by
Bell and Jackiw [21], it provided the explanation for the
observed decay of a neutral pion into two photons, prohib-
ited by chiral charge conservation, or chiral symmetry. Very
recently, a condensed matter manifestation of the chiral
anomalywas observed in a Dirac semimetal Na3Bi [22], and
possibly also in the Weyl semimetal TaAs [23,24] and in
ZrTe5 [25], which is proposed to be a Dirac semimetal.
However, despite analogies, condensed matter systems

with topologically nontrivial electronic structure are cer-
tainly significantly richer than the relativistic Dirac equa-
tion. In particular, there in fact exist two distinct classes of
Dirac semimetals [26,27]. One, in which the Dirac points
occur at time reversal invariant momenta in the first
Brillouin zone (BZ) [7], and the second, in which the
Dirac points occur in pairs, separated in momentum space
along a rotation axis [8,9]. The Dirac semimetals, that have
currently been realized experimentally [10,11], are of the
second kind. It is now understood [26–30] that the Dirac
points in such semimetals possess a nontrivial Z2 topo-
logical invariant, which protects the nodes and leads to the
appearance of Fermi arc surface states, which connect

projections of the node locations on the surface BZ, much
like in Weyl semimetals.
A natural question to ask in this regard is whether the

existence of such a Z2 topological charge manifests in any
way in transport, as the chiral charge of Weyl nodes
manifests in negative longitudinal magnetoresistance,
attributed to the chiral anomaly [22,31–33]. In this
Letter, we answer this question in the affirmative. We
demonstrate that the Dirac semimetals with two Dirac
nodes, carrying the Z2 topological charge, such as Na3Bi
and Cd2As3, exhibit the corresponding Z2 quantum
anomaly, in addition to the chiral anomaly. We further
demonstrate that the interplay of the two anomalies leads to
observable manifestations in magnetotransport experi-
ments. We also discuss possible relevance of our results
to the recent magnetotransport measurements on Na3Bi
[22], which have provided the first strong experimental
evidence for the chiral anomaly in condensed matter. In
particular, we give a possible explanation for the magnetic
field dependent angular narrowing of the negative longi-
tudinal magnetoresistance due to the chiral anomaly,
observed in this experiment.
While in this work we will specifically focus on the case

of Na3Bi, our results are equally applicable to Cd2As3. We
start from the low energy Hamiltonian of Na3Bi in
momentum space, derived in [8]

H¼vFðσxszkx−σykyÞþmðkÞσzþ γ

2
σxkzðsþk2−þs−k2þÞ:

ð1Þ

The Pauli matrices s and σ act on the spin and the orbital
parity degrees of freedom correspondingly and we will be
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using ℏ ¼ c ¼ 1 units throughout. The first two terms in
Eq. (1) describe coupling between states of opposite parity,
which forces them to be linear in the crystal momentum,
measured from the Γ point in the first BZ. Since σz is the
parity operator, the “mass" term mðkÞ is parity even and
has the following low energy form:

mðkÞ ¼ −m0 þm1k2z ; ð2Þ
which gives a pair of Dirac points at k� ¼ ð0; 0;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=m1

p ≡�k0Þ. The last term in Eq. (1) is third order
in the crystal momentum as a consequence of threefold
rotational symmetry of the crystal structure of Na3Bi,
where the rotation axis is the z axis in Eq. (1). This term
is much smaller than the other terms in the Hamiltonian in
the vicinity of the Dirac points and we will thus ignore it
henceforth. This omission has at most a quantitative effect
on our results, but makes the presentation more transparent.
We now make the following important observation. In

the absence of the last term in Eq. (1), the z component of
the spin is a strictly conserved quantity. With the last term
included, it will no longer be strictly conserved, but will
have a long relaxation time due to the smallness of this
term, which is what ultimately justifies ignoring it physi-
cally. Let s ¼ �1 be the eigenvalues of sz. Then the
Hamiltonian separates into two independent 2 × 2 blocks,
each describing a Weyl semimetal with a single pair of
Weyl nodes, separated along the z axis in momentum space

Hs ¼ vFðσxskx − σykyÞ þmðkÞσz: ð3Þ
The two Weyl semimetals are related to each other by the
time reversal operation and thus each of the two Dirac band
touching points at k� contains two Weyl nodes of opposite
chirality and opposite eigenvalue s. It is convenient to
expand the Weyl HamiltoniansHs near the nodes. To linear
order, one obtains

Hs ¼ vFsσxkx − vFσyky þ ~vFτzσzðkz − τzk0Þ; ð4Þ
where the two eigenvalues of the Pauli matrix τz, τ ¼ �1
refer to the two nodes and ~vF ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
m0m1

p
. We now

introduce Hermitian 4 × 4 gamma matrices as

Γ1
s ≡ γ0sγ

1
s ¼ sσx; Γ2

s ≡ γ0sγ
2
s ¼ −σy;

Γ3
s ≡ γ0sγ

3
s ¼ τzσz; ð5Þ

where γμs are the relativistic Dirac gamma matrices. Note
that we do not need an explicit representation for the Dirac
matrices γμs , all we really need to know are the Hermitian
gamma matrices in Eq. (5), the Dirac matrices are intro-
duced only as a convenient notation. We may now define
the chiral charge operator

γ5s ¼ iγ0sγ1sγ2sγ3s ¼ −iΓ1
sΓ2

sΓ3
s ¼ −sτz; ð6Þ

and the Z2 charge operator

sγ5s ¼ −τz: ð7Þ
The physical meaning of the chiral charge operator is clear:
the eigenvalues of γ5s are the chiralities of the four Weyl
fermions, which make up the two Dirac fermions. To clarify
the meaning of the Z2 charge operator, we note that Eq. (7)
is equivalent to CZ2

¼ ðC↑ − C↓Þ=2, where CZ2
is the Z2

charge and C↑;↓ are the chiral charges of the spin-up and
spin-down Weyl fermions. This definition is closely analo-
gous to the definition of the Z2 invariant for a two-
dimensional quantum spin Hall insulator with conserved
spin in terms of the spin Chern numbers [34]. Once the
spin-conservation-violating terms in Eq. (1) and impurity
scattering are included, only the modulo 2 part of the Z2

charge retains its meaning. Note that both the chiral charge
and the Z2 charge operators commute with the linearized
Hamiltonian, expressing the approximate chiral and Z2

charge conservation.
What is particularly interesting is that the existence of the

conserved Z2 charge has experimentally observable man-
ifestations, which may be regarded as manifestations of the
Z2 anomaly in analogy to the chiral anomaly. To see this,
let us couple gauge fields to the fermions. Since we have
two conserved quantities: charge and the z component of
the spin, we may introduce, for now purely formally, both
the charge and the spin gauge fields. The real time
Lagrangian, written in the relativistic notation, has the form

L ¼ ψ†
si∂tψ s −H

¼ ψ̄ siγ
μ
s ½∂μ þ ieðAμ þ s ~AμÞ þ iγ5sðbμ þ s ~bμÞ�ψ s; ð8Þ

where summation over s is implicit, ψ̄ s ¼ ψ†
sγ0s , andwe have

absorbed the Fermi velocities into the definition of the
corresponding coordinates.Aμ in Eq. (8) are electromagnetic
gauge fields, which couple symmetrically to the fermions
with different spin eigenvalue s, while ~Aμ are the fictitious
spin gauge fields, which couple antisymmetrically. What
gives them physical meaning is that the functional derivative
of the action with respect to ~Aμ produces the corresponding
component of the spin current, which is well defined since
the spin is conserved. bμ are the chiral gauge fields, which
couple antisymmetrically to Weyl fermions of opposite
chirality and thus shift them in opposite directions in
momentum space or in energy. Finally, ~bμ couple antisym-
metrically to fermionswith differentZ2 charge and thusmay
be called, with a slight abuse of terminology, the Z2 gauge
fields. Specifically, we have

bμ ¼ ðμ5; 0; 0; 0Þ; ~bμ ¼ ð~μ5; 0; 0; bÞ; ð9Þ

where b≡ ~vFk0. Here μ5 is the chiral chemical potential,
which is conjugate to the chiral charge operator and shifts
Weyl fermions of opposite chirality in opposite direction in
energy. It is equal to zero in equilibrium, but will in general
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be nonzero away from equilibrium in the presence of charge
currents and external electromagnetic field, see Fig. 1.
Similarly, ~μ5 is the Z2 chemical potential, conjugate to
the Z2 charge operator. It shifts the two Dirac points in
opposite directions in energy. Finally, the z component of ~bμ
is the only component that is present in equilibrium and
simply determines the distance between the twoDirac points
in momentum space.
Integrating out fermions in Eq. (8) using, e.g., the

Fujikawa’s method [35], we obtain [36,37]

S ¼ −
e2

2π2

Z
dtd3rbμϵμναβðAν∂αAβ þ ~Aν∂α

~AβÞ

−
e2

2π2

Z
dtd3r ~bμϵμναβðAν∂α

~Aβ þ ~Aν∂αAβÞ: ð10Þ

As mentioned above, the functional derivative of S with
respect to the gauge field Aμ gives the charge current, while

the functional derivative with respect to ~Aμ gives the spin
current

jν ¼ −
δS
δAν

¼ e2

π2
bμϵμναβ∂αAβ þ

e2

π2
~bμϵμναβ∂α

~Aβ;

~jν ¼ −
δS

δ ~Aν

¼ e2

π2
bμϵμναβ∂α

~Aβ þ
e2

π2
~bμϵμναβ∂αAβ: ð11Þ

On the other hand, since bμ and ~bμ act as chiral and Z2

gauge fields correspondingly, functional derivatives of the
action with respect to these give the chiral and the Z2

currents. Upon taking the divergence, we then obtain the
following anomalous chiral and Z2 charge conservation
laws

∂μj
μ
5 ¼

e2

8π2
ϵμναβðFμνFαβ þ ~Fμν

~FαβÞ;

∂μ
~jμ5 ¼

e2

8π2
ϵμναβðFμν

~Fαβ þ ~FμνFαβÞ; ð12Þ

where Fμν ¼ ∂μAν − ∂νAμ and ~Fμν ¼ ∂μ
~Aν − ∂ν

~Aμ are the
field strengths. We may pick a gauge for the spin gauge
fields ~Aμ in which only the temporal component ~A0, which
is conjugate to the spin density, is nonzero, as we do not
expect spin analogs of magnetic fields to arise in our
context. Henceforth, we will thus take ~Aμ ¼ ð ~A0; 0; 0; 0Þ.
The physical meaning of ~A0 is defined by the relation
~j0 ¼ gðϵFÞ ~A0, where ~j0 is the spin density and gðϵFÞ is the
density of states at Fermi energy, which we assume to be
small but finite.
Let us now concentrate on the situation of interest to us,

that describes Na3Bi. Substituting Eq. (9) into Eq. (11), we
obtain

j ¼ e2

π2
μ5Bþ ~σxyðẑ × ~EÞ; ð13Þ

where ~σxy ¼ e2b=π2, and ~E ¼ −∇ ~A0. Analogously,

~j ¼ e2

π2
~μ5Bþ ~σxyðẑ ×EÞ: ð14Þ

The physical meaning of Eqs. (13) and (14) is straightfor-
ward to understand. The first term on the right-hand side in
Eq. (13) describes the chiral magnetic effect [38,39], i.e., a
contribution to the charge current, proportional to the
applied magnetic field and the chiral chemical potential.
Analogously, the first term in Eq. (14) describes the Z2

magnetic effect, which generates a contribution to the spin
current, proportional to the Z2 chemical potential and the
external magnetic field. The second term in Eq. (14)
describes the spin Hall effect, i.e., the generation of a spin
current, transverse to the applied external electric field, and
~σxy is the corresponding spin Hall conductivity. Note that,
in exact analogy to Weyl semimetals [2,3], this spin Hall
conductivity may be associated with the Fermi arc edge
states: each value of the momentum kz between the Dirac
points contributes e2=π to the total spin Hall conductivity.
Finally, the second term in Eq. (13) describes the inverse
spin Hall effect, i.e., the generation of a charge current by a
gradient of the spin density.
Similarly, the chiral and the Z2 charge conservation laws

take the following form

∂n5
∂t þ ∇ · j5 ¼

e2

2π2
E ·B −

n5
τ5

;

∂ ~n5
∂t þ ∇ · ~j5 ¼

e2

2π2
~E ·B −

~n5
τ5

; ð15Þ

FIG. 1. (a) Effect of a nonzero chiral chemical potential μ5 on
the double Dirac electronic structure. (b) Effect of a nonzero Z2

chemical potential ~μ5 on the electronic structure.
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where we have introduced a finite relaxation time τ5 to
account for the fact that the chiral n5 and the Z2 ~n5 charges
are not in reality strictly conserved, when terms, nonlinear
in momentum, are included in the Hamiltonian [33]. We
have taken the relaxation times for both charges to be the
same for simplicity. Note that the coefficient ofE · B on the
right hand side of the first of Eq. (15) is twice as large as it
would be for a single Dirac point (or single pair of Weyl
points). This is because we have two Dirac points (two pairs
of Weyl points) and their chiral anomalies add up, which is
not obvious in advance, the anomalies may cancel instead.
The reason they add in our case is that there exists a
conserved quantity (spin) that distinguishes the two pairs of
Weyl fermions and, as a result, the chiral chemical potential
couples symmetrically to them.
To account for regular transport processes, not related to

the anomalies, we also need to add ordinary Drude
conductivity terms to the right hand side of Eqs. (13)
and (14), which we do by hand [40]. Then we finally obtain

j ¼ σ0Eþ e2

π2
μ5Bþ ~σxyðẑ × ~EÞ;

~j ¼ σ0 ~Eþ e2

π2
~μ5Bþ ~σxyðẑ ×EÞ; ð16Þ

where σ0 is the Drude conductivity. We take σ0 to be the
same for both charge and spin, which is true in our
approximation of an exactly conserved spin.
Equations (15) and (16) must be solved simultaneously

to obtain the magnetoresistance. Suppose a uniform dc
charge current is injected into the sample along the x
direction, while voltage leads are attached to the edges,
perpendicular to the y direction. In this case, we have from
Eq. (15)

μ5 ¼
n5

gðϵFÞ
¼ e2τ5

2π2gðϵFÞ
E ·B;

~μ5 ¼
~n5

gðϵFÞ
¼ e2τ5

2π2gðϵFÞ
~E ·B: ð17Þ

Substituting these into Eq. (16), we obtain

j ¼ σ0Eþ χðE · BÞBþ ~σxyðẑ × ~EÞ;
~j ¼ σ0 ~Eþ χð ~E · BÞBþ ~σxyðẑ ×EÞ; ð18Þ

where χ ¼ e4τ5=2π4gðϵFÞ. We now solve the equations

jy ¼ jz ¼ ~jx ¼ ~jy ¼ ~jz ¼ 0; ð19Þ

for Ey;z, ~Ex;y;z and substitute the result into the equation for
jx to obtain the diagonal resistivity ρxx. The equation ~jx ¼ 0
follows from the assumption that we have spin-unpolarized
leads. We obtain

ρ−1xx ðBÞ ¼ σ0 þ
χB2

x þ ~σ2xyð1þ χB2
z=σ0Þ=σ0

1þ χðB2
y þ B2

zÞ=σ0
: ð20Þ

Equation (20) is our main result.
Several features of Eq. (20) are noteworthy. Setting

B ¼ 0 we obtain

ρ−1xx ð0Þ ¼ σ0 þ
~σ2xy
σ0

: ð21Þ

The second term in Eq. (21) represents a reduction of the
diagonal resistivity due to the spin Hall effect, which in turn
is associated with the Fermi arc surface states. At a nonzero
magnetic field, the dependence of ρ−1xx ðBÞ on the angle
between the magnetic field and the current demonstrates
the narrowing effect, observed in Ref. [22], see Fig. 2. The
origin of this effect is the magnetic field dependence of
the denominator in Eq. (20). Physically, this follows from
the magnetic field dependence of the chiral chemical
potential, Eq. (17). Another consequence of the Z2

anomaly (and the quantum spin Hall effect as one of its
manifestations), is the anisotropy between the angular
dependences of the magnetoresistance when the magnetic
field is rotated in the xy and the xz planes. Let ϕ be the
angle between the magnetic field and the x axis when the
field is rotated in the xy plane while θ be the same angle
when the field is rotated in the xz plane. Then we obtain

ρ−1xx ðθ ¼ ϕÞ − ρ−1xx ðϕÞ ¼
~σ2xy
σ0

χB2 sin2 ϕ=σ0
1þ χB2 sin2 ϕ=σ0

; ð22Þ

where ρ−1xx ðθÞ refers to the inverse resistivity for the field
rotated in the xz plane, while ρ−1xx ðϕÞ refers to the inverse
resistivity for the field rotated in the xy plane. This
anisotropy exists only when ~σxy is not zero and is a direct
consequence of the spin Hall effect and thus the Z2

anomaly.

FIG. 2. Plots of ρ−1xx ðϕÞ − ρ−1xx ðπ=2Þ for different values of the
magnetic field, assuming ~σxy ¼ σ0 and for the field rotated in the
xy plane. Dashed lines represent cos4 ϕ dependence, normalized
to the same maximum value. The fit to cos4 ϕ is good for the
smallest magnitude of the magnetic field (solid blue line), but
becomes very poor for the largest (solid red line).
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In conclusion, we have demonstrated that in Dirac
semimetals with two Dirac nodes, separated in momentum
space along a rotation axis and characterized by a nontrivial
Z2 topological charge, there exists the corresponding Z2

anomaly. This refers to anomalous nonconservation of the
Z2 topological charge in the presence of external electro-
magnetic fields and gradients of the (nearly) conserved spin
density and is closely analogous to the chiral anomaly,
which is also present. We have shown that the interplay of
the Z2 and the chiral anomalies leads to observable effects
in magnetotransport. We have also provided a possible
explanation for the magnetic field dependent narrowing of
the dependence of the positive magnetoconductivity on the
angle between the current and the applied magnetic field,
observed in a recent experiment [22].
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