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We use the conformal bootstrap program to derive the necessary conditions for emergent symmetry
enhancement from discrete symmetry (e.g., Zn) to continuous symmetry [e.g., Uð1Þ] under the
renormalization group flow. In three dimensions, in order for Z2 symmetry to be enhanced to Uð1Þ
symmetry, the conformal bootstrap program predicts that the scaling dimension of the order parameter field
at the infrared conformal fixed point must satisfy Δ1 > 1.08. We also obtain the similar necessary
conditions for Z3 symmetry with Δ1 > 0.580 and Z4 symmetry with Δ1 > 0.504 from the simultaneous
conformal bootstrap analysis of multiple four-point functions. As applications, we show that our necessary
conditions impose severe constraints on the nature of the chiral phase transition in QCD, the deconfinement
criticality in Néel valence bond solid transitions, and anisotropic deformations in critical OðnÞ models. We
prove that some fixed points proposed in the literature are unstable under the perturbation that cannot be
forbidden by the discrete symmetry. In these situations, the second-order phase transition with enhanced
symmetry cannot happen.
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Introduction.—Symmetry in physics is the most helpful
guideline to understand nature. The philosophy of the
renormalization group (RG), in particular, dictates that the
symmetry of the physical system governs its universality
class.We further ensure its ubiquity from the observation that
the symmetry does not have to originate microscopically, but
it may appear as an emergent phenomenon. Such emergent
symmetry plays a significant role in theoretical physics.
Take a lattice system, for example. Suppose the defining

Hamiltonian possesses certain discrete or continuous sym-
metry. This does not mean that the infrared (IR) physics has
the same symmetry. Rather, it often shows enhanced
symmetry, especially when the system is at criticality.
Indeed, the emergence of global continuous symmetry
out of discrete lattice symmetry is ubiquitous in strongly
interacting systems, and it has played a key role in
understanding the nature of quantum criticality that is
outside the scope of the traditional Wilson-Landau-
Ginzburg (WLG) paradigm of phase transitions [1,2].
In this Letter, we derive the universal necessary con-

ditions for such an emergent symmetry enhancement from
discrete symmetry to continuous symmetry under the RG
flow by using the recently developed technique of the
numerical conformal bootstrap program in three dimen-
sions [3–11]. We will show that the conformal symmetry
imposes a strong constraint on when the emergent sym-
metry enhancement can or cannot occur.
Let us rephrase the question in terms of conformal field

theories (CFTs). Suppose we have a system with emergent
Uð1Þ symmetry in the IR. Can we realize the same system
with smaller discrete symmetry [e.g., Z2 ∈ Uð1Þ] without
fine-tuning? The Z2 symmetry forbids the perturbation of

the Uð1Þ symmetric fixed point under the smallest charged
operators that areZ2 odd. However, with onlyZ2 symmetry,
one cannot forbid a perturbation by twice Uð1Þ charged
operators that are Z2 even. In order to obtain the emergent
Uð1Þ symmetry, all the Z2 even but Uð1Þ charged operators
must be irrelevant. The conformal bootstrap program tells
exactly when this can happen. In this case, we find that
the scaling dimension of the Z2 odd order parameter field
must satisfy Δ1 > 1.08 in three dimensions. Otherwise, we
always have Z2 even but Uð1Þ charged relevant deforma-
tions that we cannot forbid without fine-tuning.
Prior to our work, our expectations for the emergent

symmetry have been based on an explicit ultraviolet
Lagrangian or Hamiltonian with naive dimensional counting
or, at best, with the perturbative computations, e.g., large N
expansions or ϵ expansions (see, e.g., [12–17] for the
examples we will study). We show that the conformal
bootstrap program gives the more stringent and precise
necessary conditions for the emergent symmetry. Our results
are nonperturbative, rigorous, and universal, so they should
be applied to any critical phenomena in nature as long as the
conformal symmetry is realized at the fixed point.
In this Letter, among many possibilities, we offer

applications to two widely discussed controversies in the
theoretical physics community. The one is the finite-
temperature chiral phase transition in quantum chromody-
namics (QCD), and the other is the deconfinement
criticality in Néel valence bond solid (VBS) transitions.
We also test our necessary conditions against anisotropic
deformations of OðnÞ critical vector models. The con-
formal bootstrap program predicts that the Oð4Þ ×Uð1ÞA
symmetric fixed point proposed in the QCD chiral phase
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transition and noncompact CPN−1 fixed points in Néel-
VBS transitions are unstable under the perturbation that
cannot be forbidden by the discrete symmetry. In these
systems, therefore, the second-order phase transition with
the enhanced continuous symmetry cannot happen.
Necessary conditions for emergent symmetry enhancement

from the conformal bootstrap.—The foremost basis of our
discussion is the conformal hypothesis: Under the RG flow,
the system reaches a critical point described by a unitary
CFT. In particular, not only scale symmetry but also
Lorentz and special conformal symmetry should emerge.
The hypothesis seems to be valid in many classical as well
as quantum critical systems as long as we trust the effective
field theory description with emergent Lorentz symmetry.
In particular, in the examples we will study in this Letter,
there are no perturbative candidates for the virial current in
the effective action, which is the obstruction for conformal
invariance in the scale-invariant field theory, so the scale
invariance most likely implies conformal invariance. See,
e.g., [18] for a review on this argument.
Once conformal invariance is assumed, we may study

the consistency of four-point functions that results in the
conformal bootstrap equations. In our case, we are interested
in the consistency of four-point functions hOqO

†
qOq0O

†
q0 i of

Uð1Þ charge q local scalar operators Oq, whose scaling
dimension is denoted by Δq, demanding the crossing
equations in Uð1Þ symmetric unitary CFTs. By mapping
the crossing equations to a semidefinite problem [9],
numerical optimization yields a bound on the scaling
dimension of the operators that appear in the operator
product expansion (OPE), e.g., Oq ×Oq0 ∼Oqþq0 . The idea
of studying the bootstrap equation with Uð1Þ symmetry was
first developed in four-dimensional CFTs in Ref. [19]. See
Supplemental Material [20], Sec. I, which includes
Refs. [21–24], for the details of our implementation.
Let us begin with emergent Uð1Þ symmetry from Z2.

The upper bound on Δ2 as a function of Δ1 in Uð1Þ
symmetric CFTs is straightforwardly obtained as in Ref. [6]
by studying hO1O

†
1O1O

†
1i. The plot in Fig. 1 shows that,

when the scaling dimension Δ1 of the charge-one operator
O1 is smaller than 1.08, there always exists a charge-two
operator O2 whose scaling dimension is less than 3, which
means that we have a relevant operator that cannot be
forbidden by the lattice Z2 symmetry. Therefore, we
conclude that the necessary condition for the symmetry
enhancement from Z2 to Uð1Þ is Δ1 > 1.08.
For the Z3 enhancement, we study the simultaneous

consistency of three four-point functions hO1O
†
1O1O

†
1i,

hO1O
†
1O2O

†
2i, and hO2O

†
2O2O

†
2i from the mixed correlator

conformal bootstrap analysis [10,25]. In order to make the
bound relevant for us, we make two additional assump-
tions: (i) All the charge-four operators are irrelevant, and
(ii) all the charge-neutral operators (above the identity)
have a scaling dimension larger than 1.044. The latter

assumption is motivated from our setup, because by using
the conformal bootstrap analysis we can numerically prove
that if there exists a neutral scalar operator with a scaling
dimension less than 1.044, there also exists another neutral
scalar operator whose scaling dimension is less than 3 as
shown in Supplemental Material [20], Sec. II, which
includes Refs. [26,27]. However, in all of our applications,
there is only one neutral scalar operator that must be tuned,
so the assumption is justifiable.
Figure 2 shows the upper bound on Δ3 as a function of

Δ1 and Δ2. When Δ1 ≥ 0.585, there exists an allowed
region of Δ2 where Δ3 can be irrelevant. As soon as
the bound on Δ3 touches 3, it shows a conspicuous jump
that is similar to the one observed in the fermionic
conformal bootstrap analysis [11]. Without knowing the
value of Δ2, the plot shows that the necessary condition is

FIG. 1. The upper bound on the scaling dimension Δc
2 of the

lowest-dimensional charge-two scalar operator appearing in the
O1 ×O1 OPE as a function of Δ1. The same bound applies to
O2 ×O2 ∼O4.

FIG. 2. Upper bounds on the scaling dimension of the lowest-
dimensional charge-three scalar operator appearing in the
O1 ×O2 OPE as a function of Δ1 and Δ2. The jump in the
bounds appears as soon as they touch the value 3. Note that
1.08 < Δ2 < Δc

2ðΔ1Þ must hold from the assumption that all the
charge-four operators are irrelevant. See Fig. 1.
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Δ1 > 0.580. See Supplemental Material [20], Sec. IV, for
two-dimensional projections of the plot.
In a similar manner, we can study the bound on Δ4 for

the Z4 enhancement. We obtain the simplest bound by
studying hO1O

†
1O1O

†
1i and hO2O

†
2O2O

†
2i independently,

which immediately gives Δ1 > 0.504 (see Fig. 1). The
study of the simultaneous consistency of three four-point
functions hO1O

†
1O1O

†
1i, hO1O

†
1O2O

†
2i, and hO2O

†
2O2O

†
2i

gives a stronger bound in principle, but in practice, without
introducing further assumptions, it does not improve much.
The numerical accuracy of our necessary condition is set

by the dimensions of the search space Λ in the numerical
conformal bootstrap program. The larger the dimension-
ality, the more severe the bound becomes. For the Z2, we
obtained Δ1 > 0.565 with Λ ¼ 15, while Δ1 > 0.580 with
Λ ¼ 19. Similarly, for the Z4, we obtained Δ1 > 1.07 with
Λ ¼ 19, while Δ1 > 1.08 with Λ ¼ 23. Note that increas-
ing Λ makes our necessary condition only stronger, so
our results are, albeit not necessarily the strongest, still
rigorous.
Applications.—Chiral phase transition in QCD. The

order of the chiral phase transition in finite-temperature
QCD has been controversial over many years without
reaching a consensus. In the WLG paradigm, we may
translate the problem into the (non)existence of a RG fixed
point in a certain three-dimensional WLG model whose
order parameter is given by the quark bilinear scalar field
Φīj ¼ ψ̄ īψ j (where ī, j ¼ 1, 2 runs the number of approx-
imately massless quarks in nature) with the manifest
Oð4Þ ∼ SUð2ÞR × SUð2ÞL symmetry. To reveal the nature
of the RG flow, it is crucial to discuss whether the
anomalous Uð1ÞA symmetry is restored in the IR limit
of the effective WLG model. If the Uð1ÞA symmetry is
restored, we expect that the chiral phase transition is
described by a RG fixed point with the symmetry of
Oð4Þ ×Uð1ÞA [8,15]. Otherwise, it is described by a RG
flow only with the symmetry of Oð4Þ [28].
In Refs. [12,29,30], it was shown that, under mild

assumptions, the Z2 subgroup of the anomalous Uð1ÞA is
microscopically restored, which raises the second question if
the Z2 can be further enhanced to the full Uð1ÞA under the
RG flow of the effective WLG model in three dimensions.
This is exactly the problem we have discussed, and the
conformal bootstrap program gives a definite answer.
A study of the RG properties of this effective WLG

model is notoriously hard, but the conformal bootstrap
analysis of Ref. [8] tells that the scaling dimension of the
Z2 odd operator at theOð4Þ ×Uð1ÞA symmetric fixed point
is Δ1 ¼ 0.82ð2Þ (see also [15–17] for earlier computa-
tions). It turns out that this value does not satisfy the
necessary condition for the Uð1Þ symmetry enhancement
that we have obtained. We therefore conclude that the
microscopic Oð4Þ × Z2 symmetry cannot be enhanced to
Oð4Þ ×Uð1ÞA without fine-tuning. It means that the chiral
phase transition in QCD does not accompany the full

restoration of the Uð1ÞA symmetry and does not show the
second-order phase transition described by the fixed point
studied in Refs. [8,15] unless further symmetry enhance-
ment is assumed.
Deconfinement criticality in Néel-VBS transitions. The

deconfinement criticality in Néel-VBS transitions in 2þ 1
dimensions is proposed to be an example of critical
phenomena whose description is beyond the traditional
framework of theWLG effective field theory. In Refs. [1,2],
they argued that the effective field theory description with
N component spin near the critical point is given by the
noncompact CPN−1 model [31–33] or a Uð1Þ gauge theory
coupled with N charged scalars with SUðNÞ flavor sym-
metry. While we have no rigorous proof, it was argued that
the system shows a conformal behavior once we tune one
parameter, the SUðNÞ singlet mass of the charged scalars.
However, it turns out that the actual realization of this

critical behavior in the lattice simulation has been con-
troversial for years. From the effective field theory view-
point, a difficulty comes from the existence of monopole
operators. One can argue that the lattice symmetry forbids
the smallest charged monopole operator, but not necessarily
so for the higher charged monopole operators [34,35]. For
instance, if we use the rectangular lattice, one can only
preserve the Z2 subgroup of the Uð1Þ monopole charge, if
we use the honeycomb lattice, it is Z3, and if we use the
square lattice, it is Z4. If the higher charged monopole
operators that are not forbidden by the lattice symmetry are
relevant, then we cannot reach the noncompact CPN−1

model in the IR limit without further fine-tuning, and we
typically expect the first-order phase transition in lattice
simulations.
Therefore, the central question we should address is

under which condition the higher charged monopole
operators can become irrelevant once we know the scaling
dimension of the lowest monopole charged operator.
Again, this is precisely the question we have studied. To
reiterate our results, in order to obtain Uð1Þ symmetry
enhancement, we need Δ1 > 1.08 from Z2, Δ1 > 0.580
from Z3, and Δ1 > 0.504 from Z4.
In the following, we critically review various predictions

about the nature of Néel-VBS phase transitions in the
literature for different N. We may find a convenient
summary of the scaling dimensions of operators proposed
in the literature in Supplemental Material [20], Sec. III,
which includes Refs. [36–47].
Let us begin with the N ¼ 2 case, which has the

most experimental significance. The predictions of Δ1 ¼
ð1þ ηVBSÞ=2 in the literature ranges between 0.57 and
0.68. For whichever values, our necessary condition for Z4

tells us that the charge-four operators can be irrelevant, and
it is consistent with the observation of the second-order
phase transition on the square lattice. On the other hand,
our necessary condition Δ1 > 1.08 for Z2 tells us that the
charge-two monopole operator must be relevant, so we
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predict the first-order phase transition on the rectangular
lattice as observed indeed in Ref. [34].
The most controversial question is if the charge-three

monopole operator must be relevant or not. Our necessary
condition Δ1 > 0.580 is consistent with it being either
relevant or irrelevant, depending on the value of Δ1. We
note that the scaling dimensions obtained in Ref. [48] [i.e.,
Δ1 ¼ 0.579ð8Þ, Δ2 ¼ 1.42ð7Þ, and Δ3 ¼ 2.80ð3Þ] are very
close to the bound. In particular, our results show that,
given their values of Δ1 and Δ2, the charge-three monopole
operator must be relevant, supporting their claim that they
observed the first-order phase transition on the honeycomb
lattice.
Let us next consider the N ¼ 3 case. In Ref. [35], they

obtained Δ1 ¼ 0.785, so our necessary condition implies
that it can show the second-order phase transition on the
square lattice but it cannot on the rectangular lattice, in
agreement with what is observed. The direct measurement
of Δ2 ¼ 2.0 there turns out to be close to but slightly below
our bound with Δ1 ¼ 0.785. However, we also note that
the earlier estimate of Δ1 ¼ 0.71ð2Þ in Ref. [49] may be
inconsistent with Δ2 ¼ 2.0.
For N ¼ 4, our result reveals inconsistency among the

literature. In Ref. [35], they obtained Δ1 ¼ 0.865, and our
necessary condition predicts that the charge-two monopole
operator is relevant. On the other hand, in Ref. [34], they
claim that the charge-two monopole operator is irrelevant
and the phase transition is second order on the rectangular
lattice. These statements cannot be mutually consistent, and
one of them or our conformal hypotheses must be wrong.
For N ¼ 5, the situation is again subtle. Reference [34]

claims that it shows the second-order phase transition on
the rectangular lattice. Our result then demands that
Δ1 > 1.08 to make the charge-two monopole operator
irrelevant. The values they obtained on square and honey-
comb lattices Δ1 ¼ 1.0ð1Þ are quite marginal. In contrast,
the value of Δ1 ¼ 0.85ð1Þ they obtained on a rectangular
lattice is clearly inconsistent, so it is likely that the charge-
two monopole operator is actually relevant and the phase
transition on the rectangular lattice is first order.
Finally, for N ≥ 6, the results in Ref. [34] as well as 1=N

expansions (see, e.g., [50]) suggest Δ1 > 1.08. Then our
necessary condition implies that charge-two monopole
operators can be irrelevant and the phase transition on
the rectangular lattice can be second order, in agreement
with the claims in the literature.
Anisotropic deformations in criticalOðnÞmodels. Critical

OðnÞ vector models are canonical examples of conformal
fixed points naturally realized in the WLG effective field
theory. Under the RG flow, theOðnÞ critical point is achieved
by adjusting one parameter that is OðnÞ singlet (e.g., the
temperature), but the fixed point may be unstable under
anisotropic deformations. The stability under anisotropic
deformations is an example of emergent symmetry and is
subject to our general discussions.

Let us focus on n ¼ 2 (i.e., the XY model). It is believed
that the Oð2Þ invariant conformal fixed point is unstable
under anisotropic deformations with charge q ¼ 2 and
q ¼ 3 but stable under q ≥ 4 deformations. Our current
best estimate based on the Monte Carlo (MC) simulation is
Δ1 ¼ 0.51905ð10Þ and Δ2 ¼ 1.2361ð11Þ [51]. These val-
ues are in agreement with the conformal bootstrap analysis
of Oð2Þ invariant CFTs in Refs. [4,10]. The MC simu-
lations on scaling dimensions of q ¼ 3 and q ¼ 4 defor-
mations are also available in Ref. [52] as Δ3 ¼ 2.103ð15Þ
and Δ4 ¼ 3.108ð6Þ. See also [14,53,54] for perturbative
computations.
Now given Δ1 and Δ2, our conformal bootstrap program

gives a rigorous upper bound on Δ3. With more accurate
data to be compared, we have tried to derive the more
accurate bound by increasing the approximation in our
conformal bootstrap program with Λ ¼ 23. The resulting
bound is Δ3 < 2.118 for Δ1 ¼ 0.51905 and Δ2 ¼ 1.234. It
turns out that the number quoted above is very close to (or
almost saturating) the bound we have obtained.
On the other hand, the estimate of Δ4 ¼ 3.108ð6Þ seems

slightly below the conformal bootstrap boundΔ4 < 3.52. It
is not obvious if our bound is saturated, but it is at least
consistent that our conformal bootstrap bound does not
predict that q ¼ 4 anisotropy must be relevant.
For n > 2, it is a challenging problem to determine

exactly when the cubic anisotropy becomes irrelevant. In
the large n limit the cubic anisotropy is believed to be
relevant, but for smaller n it is believed to become
irrelevant, showing the enhanced OðnÞ symmetry. The
current estimate of the critical n is around n ¼ 3 (see,
e.g., [14]). However, it is still an open question if it is
strictly smaller than 3.
Our conformal bootstrap program might shed some light

on this problem. Repeating our analysis now with OðnÞ
symmetry rather than Uð1Þ on the four-point functions
hO½ij�O½kl�O½mn�O½pq�i, we can rigorously show that the
cubic anisotropy must be relevant for n ¼ 10 with no
assumptions and for n ¼ 6 with mild assumptions (i.e.,
nonconserved vector operators have a scaling dimension
larger than 3). For n ¼ 3 and n ¼ 4, the conformal boot-
strap bound we have obtained is not conclusive yet.
Discussions.—In this Letter, we have numerically proved

the necessary conditions for emergent symmetry enhance-
ment from discrete symmetry to continuous symmetry
under the RG flow. Our necessary conditions are univer-
sally valid, but, given a concrete model with concrete
predictions on critical exponents, we may be able to offer
more stringent bounds. Even modest partial data such as
Δ0 ¼ 3 − 1=ν will make the constraint more nontrivial. We
are delighted to test the consistency of future predictions
obtained from other methods upon request.
The symmetry enhancement we have discussed is mainly

Uð1Þ, but it is possible to discuss non-Abelian enhance-
ment as well from the conformal bootstrap program. For
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example, there is an interesting conjecture [55,56] that the
noncompact CP1 model shows further symmetry enhance-
ment to SOð5Þ by combining the Néel order parameter and
VBS order parameter. However, the conformal bootstrap
analysis tells us that the currently observed value ofΔ1 (i.e.,
ηVBS ≃ ηNéel) is too small for the conjecture to hold that it
has only one singlet relevant deformation under SOð3Þ ×
SOð2Þ within SOð5Þ.
Finally, we should stress that our discussions are entirely

based on the emergent conformal symmetry. In quantum
critical systems, this is more nontrivial than in classical
critical systems. While the Lorentz-invariant conformal
fixed points are typically stable under Lorentz-breaking
deformations allowed on the lattice, it would be important
to understand precisely under which condition the con-
formal symmetry itself emerges.
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