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We point out a surprising consequence of the usually assumed initial conditions for cosmological
perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not
only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the
production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local
thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and
standard model physics, shocks form for temperatures 1 GeV < T < 107 GeV. For more general power
spectra, such as have been invoked to form primordial black holes, shock formation and the consequent
gravitational wave emission provide a signal detectable by current and planned gravitational wave
experiments, allowing them to strongly constrain conditions present in the primordial Universe as early as
10−30 sec after the big bang.
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Over the past two decades, observations have lent
powerful support to a very simple model of the early
Universe: a flat, radiation-dominated Friedmann-Lemaître-
Robinson-Walker (FLRW) background cosmology, with a
spectrum of small-amplitude, growing perturbations. In this
Letter, we study the evolution of these perturbations on
very small scales and at very early times. The simplest and
most natural possibility is that their spectrum was almost
scale invariant, with the rms fractional density perturbation
ϵ ∼ 10−4 on all scales. However, more complicated spectra
are also interesting to consider. For example, LIGO’s recent
detection of ∼30M⊙ black holes [1] motivated some to
propose a bump in the primordial spectrum with ϵ ∼ 10−1

on the relevant comoving scale. High peaks on this scale
would have collapsed shortly after crossing the Hubble
horizon, at t ∼ 10−4 sec, to form 30M⊙ black holes in
sufficient abundance to constitute the cosmological dark
matter today [2].
Here we focus on the evolution of acoustic waves inside

the Hubble horizon. In linear theory, they merely redshift
away as the Universe expands. However, higher order
calculations [3] revealed that perturbation theory fails
due to secularly growing terms. We explain this here by
showing, both analytically and numerically, in one, two,
and three dimensions, that small-amplitude waves steepen
and form shocks, after ∼ϵ−1 oscillation periods (see [4] for
earlier related work). Figure 1 shows a 2D box evolved for a
sound crossing time.
Furthermore, shock collisions would generate gravita-

tional waves. As we shall later explain, the scenario of [2],
for example, would produce a stochastic gravitational wave
background large enough to be detected by existing pulsar
timing array measurements. More generally, planned and

future gravitational wave detectors will be sensitive to
gravitational waves generated by shocks as early as
10−30 sec after the big bang [5].
Shock formation also has important thermodynamic

consequences. In a perfect fluid, entropy is conserved
and the dynamics is reversible. The presence of a spectrum
of acoustic modes means that the entropy is lower than that
of the homogeneous state but, within the perfect fluid
description, the entropy cannot increase. Shock formation
leads to the breakdown of the fluid equations, although
the evolution is still determined by local conservation
laws. Within this description, shocks generate entropy,
allowing the maximum entropy, thermal equilibrium state
to be achieved. Shock collisions also generate vorticity, a
process likewise forbidden by the fluid equations. Both
effects involve strong departures from local equilibrium
and are of potential relevance to early Universe puzzles
including the generation of primordial magnetic fields and
baryogenesis [5].
Of course, the perfect fluid description is not exact and

dissipative processes operate on small scales. In fact, the
shock width Ls is set by the shear viscosity η, and the
density jump ϵρ across the shock. For a relativistic equation
of state, i.e., P ¼ c2sρ, with cs ¼ 1=

ffiffiffi
3

p
, we find Ls ¼

9
ffiffiffi
2

p
η=ðϵρÞ [5,6]. For shocks to form, Ls must be smaller

than the scale undergoing nonlinear steepening, of order ϵ
times the Hubble radius H−1. In the standard model, at
temperatures above ∼100 GeV, the right-handed leptons,
coupling mainly through weak hypercharge, dominate
the viscosity, yielding η ∼ 16=g04 lnð1=g0Þ ∼ 400T3 [7].
Using ρ ¼ ðπ2=30ÞNT4, with N ¼ 106.75, we find Ls
falls below ϵH−1; hence, shocks form when T falls below
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∼ϵ21015 GeV, i.e., 107 GeV for ϵ ¼ 10−4. At the electro-
weak temperature, viscous effects are negligible both in
shock formation and, as we discuss later, shock decay.
However, once T falls below the electroweak scale, the
Higgs field gains a vacuum expectation value v and the
neutrino mean free path grows as ∼v4=T5, exceeding ϵH−1

when T falls below∼1 GeV for ϵ ¼ 10−4 or∼100 MeV for
ϵ ¼ 10−1. At lower temperatures, acoustic waves are
damped away by neutrino scattering before they steepen
into shocks.
This Letter is devoted to the early, radiation-dominated

epoch in which shocks form. We assume standard, adia-
batic, growing mode perturbations. Their evolution is
shown in Fig. 2: as a mode crosses the Hubble radius,
the fluid starts to oscillate as a standing wave, and the
associated metric perturbations decay. Thereafter, the fluid
evolves as if it is in an unperturbed FLRW background.
The tracelessness of the stress-energy tensor means that the
evolution of the fluid is identical, up to a Weyl rescaling, to
that in Minkowski spacetime, where the conformal time
and comoving cosmological coordinates are mapped to the
usual Minkowski coordinates.
In flat spacetime, the fluid equations read ∂μTμν ¼ 0.

For a constant equation of state, P ¼ c2sρ, we have
Tμν ¼ ð1þ c2sÞρuμuν þ c2sρημν, with uμ ¼ γvð1; ~vÞ the
fluid 4-velocity. In linear theory, the fractional density
perturbation δ and velocity potential ϕ (with ~v ¼ ~∇ϕ) obey

the continuity equation _δ ¼ −ð1þ c2sÞ ~∇2
ϕ and the accel-

eration equation _ϕ ¼ −c2s=ð1þ c2sÞδ. Setting δðt; ~xÞ ¼P
~k δ

ð1Þ
~k
ðtÞei~k:~x, for scale-invariant Gaussian cosmologi-

cal perturbations on sub-Hubble scales, the statistical
ensemble is completely characterized by

hδð1Þ~k
ðtÞδð1Þ~k0

ðt0Þi ¼ δ~k;−~k0
2π2A
k3V

cosðkcstÞ cosðkcst0Þ ð1Þ
whereA≡ ϵ2 is the variance per log interval in k and V is a
large comoving box. From Planck measurements, we
determine ϵ ≈ 6 × 10−5 [8].
Wave steepening.—The fluid energy-momentum tensor

Tμν depends on four independent variables, ρ and ~v. So the
spatial stresses Tij may be expressed in terms of the four
Tμ0 and the four equations, ∂μTμν ¼ 0 used to determine
the evolution of the fluid. For small-amplitude perturba-

tions, we expand in T0i=T00, where bar denotes spatial
average, obtaining Tij≈c2sT00δijþðTi0Tj0−c2sδijT0kT0kÞ=
½ð1þc2sÞT00� at second order.
At the linearized level, a standing wave is the sum of

a left-moving and a right-moving wave. Assuming
planar symmetry, we define Π≡ T01=T00. Consider a
right-moving linearized wave Πð1ÞðuÞ, where u≡x−cst,
v≡ xþ cst. To second order, the fluid equations read
2κ∂u∂vΠþ ð∂2

u − ∂2
vÞΠ2 ¼ 0, with κ ¼ 2csð1þ c2sÞ=

ð1 − c2sÞ. For the given initial condition, v derivatives are
suppressed relative to u derivatives by one power of Π.
Hence, we can drop the ∂2

vΠ2 term and integrate once in u
to obtain Burgers equation,

κ∂vΠþ Π∂uΠ ¼ 0; ð2Þ
for which, as is well known, generic smooth initial data
Πð0; uÞ develop discontinuities in finite time v.
Equation (2) may be solved exactly by the method of

characteristics: the solution propagates along straight lines,
so that Πðv; uþ Πð0; uÞv=κÞ ¼ Πð0; uÞ, where Πð0; uÞ is
initial data at v ¼ 0. Consider a standing wave δ ¼
−

ffiffiffi
2

p
ϵ sin kx cos kcst, with initial variance ϵ2. Decompos-

ing it into left- and right-moving waves, the latter is δð1Þ ¼
−ϵ sinðkuÞ= ffiffiffi

2
p

and, correspondingly,Πð1Þ ¼ −csϵ sinðkuÞ=ffiffiffi
2

p
. The characteristic lines first intersect at u ¼ 0 and

v ¼ ffiffiffi
2

p
κ=ðkcsϵÞ, i.e., when t ¼ κ=ð ffiffiffi

2
p

kc2sϵÞ. Setting
cs ¼ 1=

ffiffiffi
3

p
, we conclude that shocks form when kcstϵ ∼ffiffiffi

8
p

or after
ffiffiffi
2

p
=ðπϵÞ oscillation periods. The wave steep-

ening effect is also seen in perturbation theory. From (2), one
finds Πð2Þ ¼ −c2sϵ2ðkv=4κÞ sinð2kuÞ, steepening Π around
its zero at u ¼ 0, with the second order contribution to the
gradient equalling the first order contribution precisely
when kcstϵ ∼

ffiffiffi
8

p
.

Characteristic rays.— In higher dimensions, we can
likewise gain insight into shock formation by following
characteristic rays. These are the trajectories followed

FIG. 1. Simulation showing cosmological initial conditions
(left) evolving into shocks (right). The magnitude of the gradient
of the energy density is shown in grayscale. The initial spectrum
is scale invariant and cut off at 1=128 the box size, with rms
amplitude ϵ ¼ 0.02.
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FIG. 2. The growing mode perturbation, in a radiation-
dominated universe, in conformal Newtonian gauge. The density
perturbation δkðtÞ (black), the Newtonian potential Φ (red), and
the flat spacetime approximation to δkðtÞ (blue) are plotted
against kcst.
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by small-amplitude short-wavelength disturbances [6],
moving in the background provided by the perturbed fluid.
For a perfect fluid with cs ¼ 1=

ffiffiffi
3

p
, if the 3-vorticity

~∇∧ðρ1
4~uÞ is initially zero, it remains zero for all time. We

can then write ρ
1
4~u ¼ ρ̄

1
4 ~∇ϕ, with ϕ a potential, at least until

shocks form.Wewrite the perturbed density and potential as
ρ ¼ ρ̄ð1þ δb þ dδÞ and ϕ ¼ δϕb þ dϕ, where δb and δϕb
represent a background of linearized waves and dδ and dϕ
represent short-wavelength disturbances. The evolution of
dδ and dϕ is governed by the second order perturbation

equations, ∂tdδþ 4
3
~∇2
dϕþ 1

3
~∇ · ðδb ~∇dϕþ dδ ~∇δϕbÞ ¼ 0

and ∂tdϕþ 1
4
dδ − ð1=16Þδbdδþ ~∇δϕb · ~∇dϕ ¼ 0. These

may be solved in the stationary phase approximation: we set
dϕ ¼ AϕeiS and dδ ¼ AδeiS and assume thatAϕ andAδ vary
slowly so that the variation of the phase S controls the wave
fronts. The leading (imaginary) part of the equations of
motion yields a linear eigenvalue problem for Aϕ and Aδ,
with i∂tS the eigenvalue. We obtain

∂tS ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
~ð∇SÞ2

q
ffiffiffi
3

p −
2

3
ð ~∇S · ~∇δϕbÞ; ð3Þ

the Hamilton-Jacobi equation for a dynamical system with
HamiltonianHð~p; ~x; tÞ ¼ −∂tSðt; ~xÞ, where Sðt; ~xðtÞÞ is the
action calculated on a natural path, i.e, a solution of the
equations of motion. The Hamiltonian

Hð~p; ~x; tÞ ¼ j~pjffiffiffi
3

p þ 2

3
~p · ~∇δϕbðt; ~xÞ ð4Þ

and the ray trajectories ~xðtÞ obey Hamilton’s equations:

_~x¼ ~nffiffiffi
3

p þ2

3
~∇δϕb; _ni¼−

2

3
½∂i−niðnj∂jÞ�ð~n · ~∇δϕbÞ; ð5Þ

where ~n≡ ~p=j~pj. Note that (due to scale invariance) H is
homogeneous of degree unity in ~p. It follows that (i) the ray

velocities _~x depend only on the direction of ~p, not its
magnitude, and (ii) the phase of the wave on the stationary-

phase wave front, S ¼ R
dtð~p · _~x −HÞ, is a constant as a

consequence of Hamilton’s equations. Hence, when char-
acteristic rays cross, there are no diffractive or interference
phenomena.
Caustics and shocks.—The set of all characteristic rays is

obtained by solving the equations of motion (5), for all
possible initial positions and directions, ~q≡ ~xð0Þ and
~m≡ ~nð0Þ. The solutions provide a mapping from ð~q; ~mÞ
to ð~x; ~nÞ, at each time t, which can become many to one
through the formation of caustics [9]. If so, the solution to
the fluid equations can be expected to acquire disconti-
nuities such as shocks. The signature of the mapping
becoming many to one is the vanishing of the Jacobian
determinant J ≡ j∂ð~x; ~nÞ=∂ð~q; ~mÞj at some ð~q; ~mÞ. We
compute the change in this determinant in linear theory
and extrapolate to determine when it might vanish. The

dominant effect comes from the deviation in the ray
position that grows linearly in time (whereas the deviation
in the ray direction does not). Thus, we may approximate
δJ ≈ δj∂~x=∂~qj. Setting ~xðt; ~qÞ ¼ ~x0ðtÞ þ ~ψðt; ~qÞ, where
~x0ðtÞ≡ ~qþ ~mt=

ffiffiffi
3

p
is the unperturbed trajectory and

~ψðt; ~qÞ is the displacement, we integrate (5) in the approxi-
mation that ψ is small, so that the spatial argument of δϕb

may be taken as ~x0ðtÞ. To first order in ψ , δJ ≈ ~∇~q · ~ψðt; ~qÞ.
A rough criterion for J to develop zeros and thus for shocks
to form, in abundance, is that the variance hðδJÞ2i,
computed in the Gaussian ensemble of linearized pertur-
bations for ϕb, attains unity.
In these approximations, from (5) we obtain

δJ ≈
2

3

Z
t

0

dt0
�
~∇2
~q −

t − t0ffiffiffi
3

p Ô

�
δϕb½t0; ~x0ðt0Þ�; ð6Þ

where Ô≡ ½ ~∇2
~q − ð ~m · ~∇~qÞ2�ð ~m · ~∇~qÞ. The term involving

Ô (which only exists for d > 1) dominates at large t. It
describes how gradients in the background fluid velocity
deflect the ray direction ~n, with each “impulse” on ~n
contributing a linearly growing displacement to ~ψ .
We compute the variance hðδJÞ2i from (6) by taking the

ensemble average using the δϕb correlator implied by (1).
The contribution of modes with k < kc is given by

hðδJÞ2i ≈ ðkccstϵÞ2 ×

8>><
>>:

3
32

for d ¼ 1

1
16

for d ¼ 2

1
24

for d ¼ 3;

ð7Þ

so that, for example, in the 3D ensemble, at any time t
shocks form on a length scale λs ≈ ðπ= ffiffiffi

6
p Þϵcst.

Simulations.—We have implemented a fully relativistic
TVD hydro code to solve the nonlinear conservation
equations in 1, 2, and 3 dimensions (always using
cs ¼ 1=

ffiffiffi
3

p
). The code is a slight modification of [10] to

relativistic fluids and parallelizes on a single node under
OpenMP. For the initial conditions, T00 was taken to be
perturbed with a scale-invariant Gaussian random field,
and T0i was set zero, consistent with cosmological initial
conditions. The initial power was truncated at N times the
fundamental mode where; for example, N ¼ 128 for 10243

simulations in 3D and N ¼ 256 for 40962 simulations in
2D. Various initial perturbation amplitudes were simulated
in order to check consistency with the analytical discussion
provided above and below.
Thermalization.—Consider the effect of an initially

static density perturbation, ρð~xÞ ¼ ρ̄½1þ δið~xÞ�, where ρ̄
is the mean energy density. The fluid energy density is
T00 ¼ 4

3
ργ2v − 1

3
ρ, where ~v is the fluid velocity. Expanding

to quadratic order in the perturbations, we find
T00ð~xÞ ¼ ρ̄ð1þ δþ 4

3
~v2Þ. At the initial moment, ~vðxÞ is

zero everywhere and the spatial average δ̄i is zero by
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definition; hence, T00 ¼ ρ̄. However, once δ starts oscillat-
ing, a virial theorem holds, connecting the average varian-
ces: h~v2i ¼ ð3=16Þhδ2i. Thus, energy conservation implies
that δ̄ falls by 1

4
hδ2i to compensate for the kinetic energy in

the oscillating modes. The system is not, however, in local
thermal equilibrium. The entropy density is given, up to a
constant, by ρ

3
4γv≈ρ̄

3
4ð1þ3

4
δ−ð3=32Þδ2þ1

2
~v2Þ, to second

order in the perturbations. Using energy conservation
and the virial theorem, the fractional deficit in the mean
entropy density is thus−ð3=16Þhδ2i ¼ −ð3=32Þhδ2i i, where
δi is the initial density perturbation. For a scale-invariant
spectrum of initial perturbations, the fractional entropy
deficit contributed by waves of wavelengths λ1 < λ < λ2
is −ð3=32Þϵ2 R λ2

λ1
ðdλ=λÞ ¼ −ð3=32Þϵ2 lnðλ2=λ1Þ.

Once shocks form, they generate entropy at a rate
which may be computed as follows [11]. Local energy-
momentum conservation requires that the incoming
and outgoing energy and momentum flux balance in the
shock’s rest frame. This determines the incoming
fluid velocity v0 and the outgoing velocity v1 in terms
of the fractional increase Δ in the density across the
shock. One finds v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4þ 3ΔÞ=ð4þ ΔÞp
=

ffiffiffi
3

p
and

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4þ ΔÞ=ð4þ 3ΔÞp

=
ffiffiffi
3

p
. Next, the rest-frame

entropy density is directly related to the rest-frame energy
density and is therefore enhanced behind the shock
front by a factor of ð1þ ΔÞ34. Therefore, the outgoing
entropy flux is enhanced relative to the incoming flux by
ð1þΔÞ34ðγ1v1Þ=ðγ0v0Þ¼ð1þΔÞ14 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4þΔÞ=ð4þ3ΔÞp

≈1þ
ð1=64ÞΔ3, for small Δ. The entropy density behind the
shock is larger than that in front by the same factor.
Entropy production results in the dissipation of shocks.

Consider a sinusoidal density perturbation of initial ampli-
tude ϵ that forms left- and right-moving shocks of strength
Δ ¼ ϵ. Averaging over space, the entropy deficit per unit
volume is −ð3=64ÞΔ2s0, where s0 is the equilibrium
entropy density. The rate of change of this deficit equals
the rate at which the shocks generate entropy, which is
ð1=64ÞcsΔ3s0=λs, where λs is the mean shock separation.
Hence, we obtain _Δ ¼ − 1

6
ðcs=λsÞΔ2 so that shocks of

amplitude ϵ decay in a time td ∼ 6λs=ðcsϵÞ, larger than the
shock formation time by a numerical factor (which, in our
simplified model, is

ffiffiffi
3

p
π ≈ 5 in d ¼ 3). The shock ampli-

tude decay introduces a short wavelength cutoff in the
entropy deficit:

s ≈ s0
�
1 −

3

32
ϵ2 ln ½λ2=ðCcsϵtÞ�

�
; ð8Þ

with C a constant (equal to 1
6
in our simplified model). We

have checked this picture in detailed numerical simulations
in 1, 2, and 3 dimensions. Figure 3 shows a full 3D
numerical simulation compared with the prediction of (8),
with excellent agreement.

Not only do shocks generate entropy, shock-shock
interactions generate vorticity, in a precisely calculable
amount. For example, one can find a stationary solution
representing two shocks intersecting on a line, leaving
behind a “slip sheet” across which the tangential compo-
nent of the velocity is discontinuous. This discontinuity is
proportional to Δ3. More generally, nonstationary configu-
rations can generate parametrically larger vorticity, propor-
tional to Δ2 and, indeed, it is conceivable that in rare
localized regions fully developed turbulence may occur.
Finally, let us return to the production of gravitational

waves from larger-amplitude perturbations such as have
been invoked to explain the formation of black holes in the
early Universe. In second order perturbation theory, adia-
batic perturbations with amplitude ϵ lead to a stochastic
background of gravitational waves, produced at the Hubble
radius, with spectral density ΩgðfÞh2 ∼ ϵ4Ωγh2 where
Ωγh2 ∼ 4.2 × 10−5 is the fractional contribution of radia-
tion to the critical density today [12]. As we shall show
elsewhere [5], shock collisions generate a parametrically
similar contribution to the stochastic gravitational wave
background, also on Hubble horizon scales. But because
shocks form later, they emit gravitational waves at longer
wavelengths, with frequencies that are lower by a factor of
ϵ. In the scenario of [2], 30M⊙ primordial black holes
would form at a time t ∼ 10−4 sec from high peaks in
perturbations with rms amplitude ϵ ∼ 10−1. At second order
in perturbation theory these contribute a stochastic gravi-
tational wave background with ΩgðfÞh2 ∼ 4 × 10−9, at
frequencies of ∼30 nHz today. This is outside the exclusion
window of the European Pulsar Timing Array, ΩgðfÞh2 <
1.1 × 10−9 at frequencies f ∼ 2.8 nHz [13]. However, for
ϵ ∼ 0.1, the gravity wave background due to shocks peaks
at ∼3 nHz, inside the exclusion window, potentially ruling
out the scenario of [2]. Gravitational wave detectors are
now operating or planned over frequencies from nHz to
tens of MHz (see, e.g., [14]), corresponding to gravitational
waves emitted on the Hubble horizon at times from 10−4 to
10−30 sec. In combination with detailed simulations of the
nonlinear evolution of the cosmic fluid and consequent

FIG. 3. Entropy, in units of its equilibrium value, versus the
time t, in units of the sound-crossing time, for 5123 simulations of
a perfect radiation fluid with cosmological initial conditions as in
(1). The red dashed curve is a fit to the ϵ ¼ 0.05 curve using (8)
with C ¼ 1

4
. For ϵ ¼ 0.1, t has been doubled and the entropy

deficit rescaled by a quarter to verify good agreement with (8).
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gravitational wave emission, these experiments will revo-
lutionize our ability to constrain the physical conditions
present in the primordial Universe, an exciting prospect
indeed.
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