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The emerging field of quantum machine learning has the potential to substantially aid in the problems
and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical
machine learning. In this work we propose an approach for the systematic treatment of machine learning,
from the perspective of quantum information. Our approach is general and covers all three main branches of
machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in
supervised and unsupervised learning have been reported, reinforcement learning has received much less
attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning
as well, and propose a systematic scheme for providing improvements. As an example, we show that
quadratic improvements in learning efficiency, and exponential improvements in performance over limited
time periods, can be obtained for a broad class of learning problems.
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Introduction.—The field of artificial intelligence (AI) has
lately had remarkable successes, especially in the area of
machine learning [1,2]. A recent milestone, until recently
believed to be decades away—a computer beating an expert
human player in the game of Go [3]—clearly illustrates the
potential of learningmachines. In parallel, we arewitnessing
the emergence of a new field: quantum machine learning
(QML), which has a further, profound potential to revolu-
tionize the field of AI, much like quantum information
processing has influenced its classical counterpart [4].
The evidence for this is already substantiated with

improvements reported in classification and clustering
[5–8] problems. Such tasks are representative of two of
the three main branches of machine learning. The first,
supervised learning, considers the problem of learning the
conditional distribution PðyjxÞ [e.g., a function y ¼ fðxÞ],
which assigns labels y to data x (i.e., classifies data), based
on correctly labeled examples, called the training set,
provided from a distribution Pðx; yÞ. The second, unsu-
pervised learning, uses samples to identify a structure in a
distribution PðxÞ, e.g., identifies clusters. The quantum
analog of the first task corresponds to a tomography-type
problem where conditional states ρxY (states of a partition
of a system, given a measurement outcome of another
partition) should be reconstructed from the measurement
statistics of the joint state ρXY , which encodes the distri-
bution Pðx; yÞ. The unsupervised case is similar.
The third branch, reinforcement learning (RL), consti-

tutes an interactive mode of learning, and is more general.
Here, the learning agent (or learning algorithm) learns
how to behave correctly through the use of reinforcement
signals—rewards, or punishments. RL has been less
investigated from a quantum information perspective,
although some results have been reported [9,10].

The key question of how quantum processing can help
in learning requires us to clarify what constitutes a good
learning model. This can be involved, but two character-
istics are typically considered. The first is the computa-
tional complexity of the algorithm of the learner. The
second, sample complexity, is standard for supervised
learning, and quantifies how large the training set has to
be, for the algorithm to learn the distribution PðyjxÞ. That
is, in a tomography context, it counts the number of copies
of ρXY required until the learning algorithm can reconstruct
the states ρxY to the desired confidence.
In RL, sample complexity is usually substituted by

learning efficiency—the number of interaction steps
needed for the agent to learn to obtain the rewards with
high probability. The recent results in QML have focused
on improving computational complexity [5–8,10], with
only a few recent works considering sample complexity
aspects [11] or supervised computational learning [12,13].
However, the broader question of how, and to what extent,
AI can ultimately benefit from quantum mechanics, in
general learning settings, remains largely open.
In thisworkweaddress this question,with emphasis on the

more general, and less explored, RL setting. We propose a
paradigm for considering QML, which allows us to better
understand its limits and its power. Using this, we present a
schema for identifying settings where quantum effects can
help. To illustrate how the schema works, we provide a
method for achievingquantum improvements (polynomial in
the required number of interaction rounds and exponential
improvements in the success rate) in many RL settings.
A paradigm for QML.—All three learning settings fit

in the paradigm of so-called learning agents [14], standard
in the field of artificial intelligence. Here, we consider a
learning agent A (equivalently a learning program A) that
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interacts with an unknown environment E (the so-called
task environment, or problem setting) via the exchange of
messages, interchangeably issued by A (called actions
A ¼ faig) and E (called percepts S ¼ fsjg). In the
quantum extension, these sets become Hilbert spaces,
HA ¼ spanfjaiig, HS ¼ spanfjsiig, and form orthonor-
mal bases. The percept and action states, and their mixtures,
are referred to as classical states. Any figure of merit
Rateð·Þ of the performance of an agent A in E is a function
of the history of interaction H∋h ¼ ða1; s1;…Þ, collecting
the exchanged percepts and actions. The history of inter-
action is thus the central concept in learning. The correct
quantum generalization of the history is not trivial, and we
will deal with this momentarily.
If either A or E is stochastic, the interaction of A and E is

described by a distribution over histories (of length t),
denoted by A ↔t E. Most figures of merit are then
extended to such distributions by convex linearity.
To recover, e.g., supervised learning in this paradigm,

take E to be characterized by the distribution Pðx; yÞ, where
the agent is given the training set—n labeled data points
[pairs ðx; yÞ] sampled from Pðx; yÞ—as the first n percepts.
After this, the agent is to respond with the correct labels
as actions (responses) to the presented percepts, which are
now the unlabeled data points x. Reinforcement learning is
naturally phrased as such an agent-environment interaction,
where the percept space also contains the reward. We
denote the percept space including the reward status as S
(e.g., if rewards are binary then S ¼ S × f0; 1g).
Formally, the agent-environment paradigm is a two-party

interactive setting, and thus convenient for a quantum
information treatment of QML. All the existing results
group into four categories [15]: CC, CQ, QC, and QQ,
depending on whether the agent (first symbol) or the
environment (second symbol) are classical (C) or quantum
(Q). The CC scenario covers classical machine learning.
The CQ setting asks how classical learning techniques may
aid in quantum tasks, such as quantum control [16,17],
quantum metrology [18], adaptive quantum computing
[19], and the design of quantum experiments [20]. Here
we deal with, for example, nonconvex or nonlinear opti-
mization problems arising in quantum experiments, tackled
by machine learning techniques. QC corresponds to quan-
tum variants of learning algorithms [7,10,21] facing a
classical environment. Figuratively speaking, this studies
the potential of a learning robot, enhanced with a “quantum
chip.” In QQ settings, the focus of this work, both A and E
are quantum systems. Here, the interaction can be fully
quantum, and even the question of what it means “to learn”
becomes problematic as, for instance, the agent and
environment may become entangled.
Framework.—Since learning constitutes a two-player

interaction, standard quantum extensions can be applied:
the action and percept sets are represented by the afore-
mentioned Hilbert spaces HA, HS. The agent and the
environment act on a common communication register RC

(capable of representing both percepts and actions). Thus, the
agent (environment) is described as a sequence of completely
positive trace-preserving maps fMt

AgðfMt
EgÞ—one for

each time-step—that acts on the register RC, but also a
private register RA (RE) that constitutes the internal memory
of the agent (environment). This is illustrated in Fig. 1 above
the dashed line.
The central object characterizing an interaction, namely,

its history, is, for the quantum case, generated by perform-
ing periodic measurements on RC in the classical (often
called computational) basis. The generalization of this
process for the quantum case is a tested interaction: we
define the tester as a sequence of controlled maps of the
form

UT
t ðjxiRC

⊗ jψiRT
Þ ¼ jxiRC

⊗ Ux
t jψiRT

;

where x ∈ S∪A, and fUx
t gx are unitary maps acting on the

tester register RT, for all steps t. The history, relative to a
given tester, is defined to be the state of the register RT.
A tested interaction is shown in Fig. 1.
The restriction that testers are controlled maps relative

to the classical basis guarantees that, for any choice of the
local maps Ux

T , the interaction between classical A and E
remains unchanged. A classical tester copies the content of
RC relative to the classical basis, which has essentially the
same effect as measuring RC and copying the outcome. In
other words, the interface between A and E is then classical.
It can be shown that, in the latter case, for any quantum
agent and/or environment there exist classical A and E that
generate the same history under any tester [22]. In other
words, classical agents can, in QC settings and, equiv-
alently, in classically tested QQ settings, achieve the same
performance as quantum agents, in terms of any history-
dependent figure of merit. Thus, the only improvements
can then be in terms of computational complexity.
Scope and limits of quantum improvements.—What is the

ultimate potential of quantum improvements in learning?
In the QC and classically tested settings, we are bound to
computational complexity improvements, which have been
achieved in certain cases. Improvements in learning effi-
ciency require a special type of access to the environments,
which is not fully tested. Exactly this is done in Refs. [6,8],
for the purpose of improving computational complexity, with
great success, as the improvement can be exponential. There,
the classical source of samples is substituted by a quantum
RAM [32] architecture, which allows for the accessing of
many samples in superposition. Such a substitution comes

FIG. 1. Tested agent-environment interaction. In general, each
map of the tester UT

k acts on a fresh subsystem of the register RT,
which is not under the control of the agent, nor of the
environment. The crossed wires represent multiple systems.
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naturally in (un)supervised settings, as the basic interaction
comprises only two steps and is memoryless—the agent
requests M samples, and the environment provides them.
However, in more general settings, environments are ill
suited for such quantum parallel approaches: in general, the
environment stores all the actions of the agent in its memory,
never to return them again. This effectively breaks the
entanglement in the agent’s register RA, and prohibits all
interference effects. Nonetheless, for many environmental
settings, it is still possible to “dissect" the maps of the
environment, and to provide oracular variants, which we can
use to help the agent learn.
An approach to quantum improvements in reinforcement

learning.—This brings us to our schema for improving RL
agents. First, given a classical environment E, we define fair
unitary oracular equivalents Eq. Here, fair is meant in the
same sense as quantum oracles of boolean functions are fair
analogues of classical boolean functions—Eq should not
provide more information than E under classical access,
which is guaranteed, e.g., when Eq is realizable from a
reversible version of E. Second, as access to any quantum
environment Eq cannot generically speed up all aspects of
an interaction (e.g., while quantum walks can find target
vertices faster, the price is that the traversed path is
undefined), we identify particular environmental properties
that can bemore efficiently ascertained usingEq, and that are
relevant for learning. Third, we construct an improved agent
that uses the properties from the previous points. We now
illustrate our approach on a restricted scenario, for the ease of
presentation, and show how the examples generalize later.
Application of the framework.—Given any task environ-

ment, we can separately consider the map that specifies the
next percept the environment will present—in general, a
stochastic function fE∶H → S, mapping elapsed histories
onto the next percept—and the reward function. The latter is
described as the mapΛ∶H × S → S, which also depends on
the history, and complements thepercept by setting its reward
status. In environments that are simple and strictly epochal
(meaning the environment is reset afterM steps and at most
one reward is given), although the interaction is turn based, it
can be represented as sequences of M-step maps:

ja1;…; aMi → js1;…; ¯sMi ð1Þ

where the “bar” on sM highlights that it includes a reward
status.Moreover, in deterministic environments, themaps fE
andΛ only depend on the actions of the agent, as the percept
responses are fixed. For such deterministic, simple strictly
epochal environments, the construction of an appropriate
oracle is dramatically simplified. The actions can be returned
to the agent after each block ofM steps, as the next block is
independent. Moreover, using phase kickback, the reward
map can be modified [22] such as to influence just the global
phase of returned action states. This leads to the “phase-flip”
oracle realizing

ja1;…; aMi→
Eq
oracle ð−1ÞΛða1;…;aMÞja1;…; aMi: ð2Þ

One use of this environment-specific oracle requires M
interaction steps. This constitutes the first step of our
proposed schema. Next, we focus on step 2: obtaining a
useful property of the environment, and identifying settings
where it provably helps. The constructed oracle points
towards the use of a Grover-type search to find rewarding
action sequences. This alone suffices for improvements only
in special environments where learning reduces to searching.
We can do better by combining fast searchingwith a classical
learning model. In canonical RL settings, what the agent
learns (should learn) is not a correct sequence of moves
per se, but rather the correct association of actions given
percepts. To illustrate this, imagine navigating a maze where
the percepts encode correct directions of movement. If the
correct association is learned, then the agent will perform
well, evenwhen themaze changes.Nonetheless, for the agent
to learn the correct association, it first must encounter an
instance of rewarding sequences, and here quantum access
helps. Thus, we aim at assisting in the exploration phase of
the balancing act between exploration (trying out behaviors
to find optima) and exploitation (reaping rewards by using
learned information) characteristic for RL [33]. This idea
can be made fully precise by considering the class of
environments where more successful exploration phases
are guaranteed to lead to a better overall learning perfor-
mance. Whether this is the case, however, also depends on
the learning model of the agent. Thus, we identify agent-
environment pairs, where such better performance in the past
(in exploration) implies better performance in the future (on
average), which we call luck-favoring settings.
More formally, consider environments E, and agents A,

such that if ht and h0t are t-length histories, then RateðhtÞ >
Rateðh0tÞ (i.e., ht is a history with a better performance
than h0t) implies

Rate(EðhtÞ ↔T AðhtÞ) ≥ Rate(Eðh0tÞ ↔T Aðh0tÞ); ð3Þ
for some future period T. Here, EðhÞ and AðhÞ denote the
environment and agent, respectively, that have undergone
the history h [note that AðhÞ and A are, technically, different
agents].
We will say AðhtÞ is luckier than Aðh0tÞ. Such environ-

ment-agent pairs ðA;EÞ, satisfying the formal conditions
above, are thus luck favoring, and we may additionally
specify the periods t and T for which the implication (3)
holds. This brings us to step 3 of the schema, given as a
theorem.
Theorem 1: Let E be a deterministic, strictly epochal

environment. Then, there exists an oracular variant Eq of E,
such that for any classical learning model A that is luck
favoring relative to E, and a figure of merit Rate that is
monotonically increasing in the number of rewards in the
history, we can construct a quantum agent Aq such that Aq,
by interacting with Eq, outperforms A in terms of the figure
of merit Rate relative to a chosen tester.
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This theorem states that, in the restricted settings of
deterministic epochal environments, it is possible to generi-
cally improve the learning efficiency of all learning agents,
provided the environments are luck favoring for those agents.
We note that most reasonable learning models are luck
favoring relative to most typically considered task environ-
ments (seeRef. [22] for a longer discussion). In the statement
of Theorem 1, we have omitted additional specifications
pertaining to t and T, but it should be understood that if the
luck-favoring property holds for t and T, then the improved
performance holds relative to these periods.
To prove Theorem 1 we construct Aq, given A. The

construction is illustrated step by step in Fig. 2, where for
illustrative purposes, the classical interaction of agent A is
contrasted against the quantum interaction of agent Aq. In
step 1,Aqwill use the quantumoraclevariant ofE (Eq

oracle) for
time t ∈ Oð

ffiffiffiffiffiffiffiffiffi

jAjM
p

Þ, whereM is the epoch length, and jAj is
the number of actions, to find a rewarding action sequencear,
using a Grover search. During this period the interaction is
untested, and the interaction is fully classically tested there-
after. In step 2, Aq will play out one epoch by outputting
actions from ar sequentially, now with the classical envi-
ronment, to obtain the responses of the environment (recall,
Eq
oracle cannot provide these), obtaining the entire rewarding

history hr. Thus far, Aq usedOðM
ffiffiffiffiffiffiffiffiffi

jAjM
p

Þ interaction steps.
In step 3, Aq “trains” an internal simulation of A, simulating
the interaction betweenA andE, and restarting the simulation
until the historyhr occurs (we assume such anoccurrence has
a nonzero probability). This may require many internally
simulated interactions, but no interaction with the real
environment. In step 4, the internal simulation of AðhrÞ
corresponds to the luckiest agent possible, and Aq relin-
quishes control to it.
Finally, we consider what happens with A during the

same time periods. Unless additional information about the
environment is given, in OðtÞ steps A has only an

exponentially small fO( exp½−M lnðjAjÞ=2�Þg probability
of having seen the rewarding sequence. Thus, the quantum
agent is luckier than the classical, and in luck-favoring
settings this implies that Aq will continue to outperform A
after the t steps. The statement of Theorem 1 is not
quantitative, due to the generality of the definition of
luck-favoring settings. We can, however, trade off generality
for exactness. If an agent A employs a variant of ϵ-greedy
[33] behavior—that is, it outputs the rewarding sequence
(exploits) with probability ϵ and explores with probability
1 − ϵ, then the ratio of the performances of Aq and A will be
exponential in M: the constant reward probability ϵ of Aq

versus the exponentially diminishing O( exp½−M lnðjAjÞ=
2�) of A at step t. This exponential gap holds for time scales
T ∈ OðtÞ. However, the improvement in terms of learning
efficiency (number of interaction steps) is quadratic.
Our results achieve solid improvements using simple

techniques, at the cost of restricting the task environments.
However, our example can be further generalized in two
directions.
First, as long as the reset occurs at step M, multiple

and multivalued rewards can also be handled by defining
oracles that reversibly count the rewards. Highly rewarding
sequences can then be found through quantum optimization
techniques [34], as worked out in Ref. [22].
Second, under stronger assumptions on Eq, using more

involved quantum subroutines, we can deal with stochastic
environments. For instance, in the setting with one reward
per epoch, the oracle

jaij0i→UEjaiðcos θaj0i þ sin θaj1iÞ; ð4Þ
where sin2 θa is the probability of a reward, given the action
sequence a, can be constructed from a reversible imple-
mentation of the environment where randomness is repre-
sented as a subsystem of an entangled state [22].
From here, by using phase kickback and phase estima-

tion the agent can realize the mapping

jaij0i → jaij~θai; ð5Þ
where ~θa is an l-bit precision estimate of the reward
probability as specified by the angle θa. Next, amplitude
amplification is used to amplitude amplify all sequences a
where the reward probability prðaÞ, given sequence a, is
above a threshold pmin.
Given Nmin such sequences (out of Ntot ≔ jAjM sequen-

ces in total), the overall number of interaction steps
multiplies M with the amplitude amplification cost
½O(ðNtot=NminÞ1=2)�, and with phase estimation cost
½Oð1=pminÞ�. Overall, we have O(MðNtot=NminÞ1=2p−1

min)
interaction steps. The classical agent’s interaction cost of
the same process is OðMNtot=NminÞ.
If the minimal relevant success probability is constant for

a family of task environments, then this constitutes a
quadratic improvement in finding good action sequences.
This approach can also be generalized to a wider class of
settings [22].

FIG. 2. Differences between the interaction for A and Aq. In
steps 1 and 2, Aq uses access to Eq

oracle, forOðtÞ steps, and obtains
a rewarding sequence hr. Step 3: Aq simulates the agent A, and
trains the simulation to produce the rewarding sequence. In step
4, Aq uses AðhrÞ for the remainder of the now classically tested
interaction, with the classical environment E.

PRL 117, 130501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

23 SEPTEMBER 2016

130501-4



In many settings, e.g., robotics, the classical environ-
ments do not allow “oracularization.” Nonetheless, the
presented constructions can be used in model-based learn-
ing [14], where the agent constructs an internal represen-
tation of the environment to facilitate better learning
through simulation. Then, the quantum chip can help in
speeding up internal processing, which is the most that can
be done in QC settings. A tantalizing exception to this may
be nanoscale robots (e.g., intelligent versions of in situ
probes in Ref. [19]) in future quantum experiments, as on
these scales the environment is manifestly quantum and
exquisite control becomes a possibility.
Conclusions.—In this work we have extended the gen-

eral agent-environment framework of artificial intelligence
[14] to the quantum domain. Based on this, we have
established a schema for quantum improvements in learn-
ing, beyond computational complexity. Using this schema,
we have given explicit constructions of quantum-enhanced
reinforcement learning agents, which outperform their
classical counterparts quadratically in terms of learning
efficiency, or even exponentially in performance over
limited periods. This constitutes an important step towards
a systematic investigation of the full potential of quantum
machine learning, and the first step in the context of
reinforcement learning under quantum interaction.
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