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Delay-coupled electro-optical systems have received much attention for their dynamical properties and
their potential use in signal processing. In particular, it has recently been demonstrated, using the artificial
intelligence algorithm known as reservoir computing, that photonic implementations of such systems solve
complex tasks such as speech recognition. Here, we show how the backpropagation algorithm can be
physically implemented on the same electro-optical delay-coupled architecture used for computation with
only minor changes to the original design. We find that, compared to when the backpropagation algorithm
is not used, the error rate of the resulting computing device, evaluated on three benchmark tasks, decreases
considerably. This demonstrates that electro-optical analog computers can embody a large part of their own
training process, allowing them to be applied to new, more difficult tasks.
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Introduction.—Nonlinear dynamical systems, such as
neural networks, can be used to perform highly complex
computations, e.g., speech or image recognition. One of the
main difficulties when using such systems is to train their
internal parameters. The backpropagation (BP) algorithm
[1,2] is one of the most important algorithms in this area,
and is behind the remarkable successes achieved in the field
of deep learning in the last decade [3]. The simple idea
behind the BP algorithm is to compute the derivative (or
gradient) of a cost function in the parameter space of the
system. The gradient is then subtracted from the parameters
themselves in order to reduce the cost function. This
process is repeated until the cost function no longer
reduces.
Such nonlinear dynamical systems can be implemented

in hardware. Here, also, the training of internal parameters
is key and the use of the BP algorithm is highly beneficial
in order to improve performance [4,5]. However, imple-
menting the BP algorithm in hardware systems can be
difficult because of the need for an accurate model to
compute the gradient and because of the resources neces-
sary to run the BP algorithm. Remarkably, in certain cases,
the BP algorithm can be implemented physically on the
system it is optimizing [6]. The basic idea behind this
advance is to use a slightly modified version of the system
for propagating error signals backwards, i.e., for running
the BP algorithm. Such self-learning computing systems
could be highly advantageous, as any gain in terms of
processing speed or limited power consumption will also
apply to the training phase. Furthermore, having the same
hardware computing the BP algorithm eliminates, to a large
extent, the need for an accurate model of the system. This
idea may conceivably also have implications for biological

neural networks, as these are physical system that—using
mechanisms that are not yet well understood—can both
compute and carry out their own training process.
Reference [6] also reported a proof of concept experiment
in which physical BP was tested on a simple task, but
left open the question of whether the algorithm, with
all the imperfections inherent in an experiment, can provide
the same improvement in performance as numerical
approaches [4,5].
References [4–6] used, as a computational device, a

delay dynamical system (see [7,8]). Such systems can be
exploited to realize a form of analog computer based on the
reservoir computing (RC) paradigm [9,10] in which unop-
timized high-dimensional dynamic systems (termed reser-
voirs) are used as signal processors. The RC approach is
simple, versatile, and can be applied to a wide set of
problems (see the review [11]) and experimental imple-
mentations [12–20]. Applying the BP algorithm to delay-
coupled signal processors allows one to optimize many
more parameters than in traditional RC, yielding significant
improvements in performance as was shown in simulation
in [4], and subsequently, in an experiment [5] in which BP
was applied to a numerical model of the system, and the
results of the BP algorithm applied to the physical
experimental setup.
Here, we implement the BP algorithm physically on an

electro-optic delay dynamical system used as a signal
processor. Our key innovation is to modify the system
used in [16,17] by adding a photonic setup capable of
implementing both the nonlinearity and its derivative, so
that it can be used both as a signal processor and to perform
the BP algorithm. We test our system on several tasks
considered hard in the machine learning community,
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including a real world phoneme recognition task (the
TIMIT task, discussed later in this Letter), obtaining state
of the art results when the BP algorithm is used. Thus, the
present work demonstrates the full potential of physical BP.
It constitutes an important step towards self-learning
hardware, with potential applications towards ultrafast,
low energy consumption, computing systems.
In the following, we first recall the principles of reservoir

computing and error back propagation, before introducing
our experimental implementation. We then report the
results obtained on several benchmark tasks, and conclude
with a discussion of the results and their implications.
Reservoir computing.—In typical RC tasks, the goal is to

map an input sequence si (where i ∈ f1;…; Lg, with L the
total sequence length) to an output sequence yi, which has
target values y�i , for example a speech signal to a sequence
of labels. In order to use delay-coupled systems as reservoir
computers, the discrete time input sequence si is encoded
into a continuous time function zðtÞ by the input maskmðrÞ
and bias mask mbðrÞ, where r ∈ ½0; T�, with T the masking
period, as follows:

zðtÞ ¼ zðiT þ rÞ ¼ mðrÞsi þmbðrÞ: ð1Þ

In our implementation, we use a delay-coupled system with
sine nonlinearity (which stems from the transfer function of
the intensity modulator, as will be explained below), which
obeys the equation

aðtþDÞ ¼ μ sin ½aðtÞ þ zðtÞ�; ð2Þ

where aðtÞ is the state variable and D is the delay. The
factor μ corresponds to the total loop amplification.
Equation (2) can be seen as a special case of the Ikeda
delay differential equation [21].
One then needs to map the continuous time state variable

aðtÞ to a discrete time output sequence yi. This is performed
using an output mask uðrÞ where r ∈ ½0; T� and a bias term
ub as follows:

yi ¼
Z

T

0

draðiT þ rÞuðrÞ þ ub: ð3Þ

In the RC paradigm, the input mask is typically chosen
randomly, and the output mask uðrÞ and ub is determined
by solving a linear system of equations which minimizes
the mean square error C between the desired and actual
output: C ¼ hðyi − y�i Þ2ii.
Error backpropagation.—The goal of applying error

backpropagation to the above scheme is to optimize both
the input and output masks mðrÞ, mbðrÞ, uðrÞ, and ub,
knowing the output aðtÞ, and the desired output y�i . To this
end, one needs the gradient of C with respect to the
masks, given by (the proof is given in the Supplemental
Material [22])

ēðiT þ rÞ ¼ eiuðrÞ; ð4Þ

eðt −DÞ ¼ JðtÞ½eðtÞ þ ēðtÞ�; ð5Þ

JðtÞ ¼ μ cos ½aðtÞ þ zðtÞ�; ð6Þ

dC
dmðrÞ ¼

X
i

eðiT þ rÞsi; ð7Þ

dC
dmbðrÞ

¼
X
i

eðiT þ rÞ; ð8Þ

where ēðtÞ ¼ ∂C=∂aðtÞ is a continuous time signal and, as
above, i ∈ f1;…; Lg and r ∈ ½0; T�. One can then iter-
atively improve the masks so as to lower C.
Physical BP.—In order to use the same hardware for

both the signal processing and its own training, one exploits
the very close analogy between Eqs. (1) and (4)—both are
formed in the same way from a discrete time sequence,
multiplied by a periodic mask—as well as the very close
analogy between Eqs. (2) and (5)—both are delay systems.
However, the equation for eðtÞ depends on future values, so
it needs to be solved backwards in time. In practice one
time-inverts ēðtÞ and JðtÞ before computing eðtÞ to obtain a
linear delayed equation

eðqþDÞ ¼ JðqÞ½eðqÞ þ ēðqÞ�; ð9Þ

where we use q instead of t to remind oneself that we are
dealing with time-inverted signals. We also note that JðtÞ,
the derivative of the nonlinear function, is a cosine, which
can also be implemented using the intensity modulator.
Although this property of the sine function is key for this
experiment, other types of nonlinearity can be implemented
in analogue hardware (see the discussions).
Experimental implementation.—In the present Letter, we

show how Eqs. (2) and (9) can be realized using the same
physical setup. Our fibre optics experiment is depicted in
Fig. 1. Light is generated by a superluminescent diode (SLD)

FIG. 1. Schematic representation of the experimental system.
SLD: superluminescent diode; MZM1 and MZM2: dual input-
dual output Mach-Zehnder Modulators; V1 and V2: driving
voltages of the MZMs; att.: programmable optical attenuator;
add.: electrical combiner; amp.: amplifier.
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emitting in the telecommunications band (1550 nm, with a
33nmFWHM),modulated by twodual input and dual output
Mach-Zehnder modulators (MZM), and attenuated using a
programmable optical attenuator used to control the total
loop amplification of the system, i.e., μ in Eq. (2). It then
propagates through an approximately 1.6 km long spool of
optical fibrewhich provides a total loop delay of 7.93 μs. The
light is split and enters two photodiodes, one of which
provides the feedback signal. The signals are produced and
recorded by digital-to-analog converters (DAC) and analog-
to-digital converters (ADC), controlled by a Xilinx Virtex 6
field-programmable gate array (FPGA) chip. The FPGA
simultaneously generates the input voltage signals and
records the output signals. The FPGA communicates with
a computer that controls the whole experiment. (Further
details on the experimental setup are given in the
Supplemental Material [22]).
The key innovation with respect to the earlier experi-

ments [16,17] is the use of two dual input and dual output
MZMs, see Fig. 1, which allows us to implement both
Eqs. (2) and (9) using the same physical system. Taking
into account the incoherence of light in the two branches
between the modulators (see Supplemental Material [22]
for details), the output of the upper branch of MZM2 (see
Fig. 1) can be found to be

Iþ2 ¼ I0
2
½1þ sinðV1=V0Þ sinðV2=V0Þ�; ð10Þ

where I0 is the input intensity in the upper branch of
MZM1, V1 and V2 are the driving voltages, and V0 a
constant depending on the MZM. The computational
details are presented in the Supplemental Material [22].
In the forward mode, we choose V1=V0 ¼ π=2. Thus, the
transfer function acts as a sinusoidal function for the input
argument V2=V0 ¼ aðtÞ þ zðtÞ. The constant offset I0=2 is
removed by the high-pass filter of the amplifier, that drives
the MZM. Therefore, once the loop is closed, we end up
with Eq. (2). In the backward mode, we driveMZM1 with a
voltage V1=V0 ¼ aðqÞ þ zðqÞ þ π=2, and MZM2 with a
signal proportional to ēðqÞ þ eðqÞ, but scaled down suffi-
ciently such that sinðV2=V0Þ ≈ V2=V0 ¼ ēðqÞ þ eðqÞ,
which gives the desired functionality for the adjoint system
Eq. (9).
In order to train our reservoir computer, we first choose a

value of μ close to the threshold for instability. We then
iterate the following three steps for (typically) several
thousands of iterations, during which performance slowly
improves until it converges: (1) We take the training data
(typically a small subsequence of the complete set), and
convert it to zðtÞ using the input masks. We feed this signal
to the experimental setup, physically implementing Eq. (2).
Next, we measure and record the signal aðtÞ, and generate
an output sequence yi using the output masks. (2) From the
output and the desired target values we compute the
sequence ei ¼ ∂C=∂yi at the output, and convert it to

ēðtÞ, now using the output mask as an input mask. Next, we
time-invert it and feed it back into the experimental setup.
Simultaneously, we drive the first MZM with the (time-
inverted) signal aðqÞ þ zðqÞ in order to implement the
online multiplication with JðqÞ. We record the response
signal eðqÞ. (3) From the recorded signals aðtÞ and eðtÞ, we
obtain the gradients for the masking signals, which we use
to update the input and output masks

mðrÞ ← mðrÞ − ηdC=dmðrÞ;
mbðrÞ ← mbðrÞ − ηdC=dmbðrÞ;
uðrÞ ← uðrÞ − ηdC=duðrÞ;
ub ← ub − ηdC=dub; ð11Þ

where η is a (typically small) learning rate. In order to speed
up convergence, we applied a slightly more advanced
variant of these update rules known as the Nesterov
momentum [24,25] (details are given in the Supplemental
Material [22]).
Results.—We experimentally validate the above scheme

using the system described in Fig. 1 by testing it on three
time series processing tasks. We consider first of all the
NARMA10 task [26], an academic task often used in the
RC community. Here, the input sequence si consists of a
series of independent and identically distributed random
numbers drawn uniformly from the interval [0, 0.5]. The
desired output sequence is given by

y�i ¼ 0.3y�i−1 þ 0.05y�i−1
X10
n¼1

y�i−n þ 1.5sisi−9 þ 0.1: ð12Þ

The second task we will call VARDEL5 (from variable
delay). Here, the input sequence consists of independent
and identically distributed. digits drawn from the set
f1; 2; 3; 4; 5g. The desired output is then given by
y�i ¼ si−si ; i.e., the goal is to retrieve the input instance
delayed with the number of time steps given by the
current input.
As a performance metric for NARMA10 and VARDEL5

we use the normalized root mean square error (NRMSE),
which is given by

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðyi − y�i Þ2ii
hðy�i Þ2ii

s
: ð13Þ

The NRMSE varies between 0 (perfect match), and 1 (no
relation between output and target).
The third task is a frame-wise phoneme labeling task. We

use the TIMIT dataset [27], a speech dataset in which each
time step has been labeled with one of 39 phonemes. The
input data are high-dimensional (consisting of 39 frequency
channels), and the desired output is one of (coincidentally)
39 possible output classes. The goal is to label each frame
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in a separate test set. Consequently, the performance metric
is now the classification error rate, i.e., the fraction of
misclassified phonemes in the test set. Note that the
masking scheme and BP algorithm are easily extended
to multidimensional input and output sequences (more
details are provided in the Supplemental Material [22]).
The TIMIT task has been studied before in the context of
RC, which has shown it to be challenging, typically
requiring extremely large reservoirs to obtain competitive
performance [28,29].
For all these tasks, we compared performance of the fully

trained system to traditional RC, where we kept the input
and bias masks fixed and random, and only optimized their
global scaling and the feedback strength parameter μ. Full
experimental details for each task may be found in the
Supplemental Material [22], together with an example of
optimized input masks and of convergence of NRMSE
during training. The results are shown in Fig. 2. The
experimental setup is successful in performing both useful
computations, and implementing its own training process.
The fully trained system consistently outperforms the RC
approach in all tasks considered.
For the NARMA10 task, we improve over all previous

experimental results. The previous best was published in
[20], which reported a NRMSE of 0.249 for 50 virtual
nodes, and 0.22 for 300 virtual nodes, whereas here, we
obtain a NRMSE of 0.185 for 80 nodes (note that, in [20],
they report normalized mean square error, which is the
square of the NRMSE). That result was obtained on an
experimental setup that was specially designed to produce
a minimal amount of noise (using a passive cavity as a
reservoir). The lowest reported experimental NRMSE
on a setup equivalent to ours was 0.41 [17]. Note that
we obtain a better average performance for the RC setup
(NRMSE ¼ 0.32), which is most likely due to the
higher number of virtual nodes (80 as opposed to 50
in [17]).
For the VARDEL5 task, we cannot directly compare to

literature; however, as pointed out in chapter 5 of [30], this
task is an important example of a task that is so nonlinear

that it is nearly impossible to solve it with RC. This is
confirmed here; the NRMSE of RC is 0.66, indicating that
the reservoir has only captured the task on a very
rudimentary level. The fully trained system shows a
drastically better performance (NRMSE ¼ 0.15). This
shows that training the input masks not only allows for
better performance on existing tasks, but also allows one to
tackle tasks that are so intricate that they are considered
beyond the reach of traditional RC.
For the TIMIT task, we obtain a classification error rate

of 34.8% for fully trained systems, vs 42.9% for the
standard RC approach. These results are only slightly
worse than similar experimental results presented in [5],
(33.2% for the fully trained systems and 40.5% for the RC
approach) where 600 virtual nodes were used as opposed to
200 in our case.
Discussion.—The present work confirms the results

anticipated in [4,5]: the performance of delay-based reser-
voir computers can be drastically improved by optimizing
both input and output masks. Furthermore, following the
proposal of [6], we showed that the underlying hardware is
capable of running a large part of its own optimization
process. We performed our demonstrations on a fast
electro-optical system (whose speed could be readily
improved by several orders of magnitude, see, e.g.,
[15]), and on tasks considered hard in the RC community.
Importantly, our work has revealed that the BP algorithm is
robust against various experimental imperfections (see the
Supplemental Material [22] for details), as the performance
gains we obtained on all three tasks were similar to those
predicted by numerical simulations.
Although our experiment relies on the sine nonlinearity

and its cosine derivative, other nonlinear functions can also
be successfully realized in hardware with their derivatives.
For instance, the so-called linear rectifier function, which
truncates the input signal below a certain threshold, is a
popular activation function in neural architectures [31]. Its
derivative is a simple binary function which can be easily
implemented using an analogue switch, as in [6]. In [32], it
is shown how to implement a sigmoid nonlinearity and its
derivative, and in [18,20], the nonlinearity is quadratic, and
therefore, the derivative, which is linear, should also be
easy to implement. Furthermore, the BP algorithm is robust
against imperfect implementation of the derivative, as
shown in section 4.3 of the Supplemental Material [22],
and in the Supplemental Material of [6] (Supplemental
Note 4). Therefore, we expect that physical implementation
of the BP algorithm will be possible in a wide variety of
physical systems.
The current setup still requires some slow digital

processing to perform the masking and to compute gra-
dients from the recorded signals. Performing masking
operations in analog hardware, however, is actively being
researched [33], and these approaches could be used to
speed up the present setup. Another limitation is the

FIG. 2. Comparison of performances for the three tasks under
consideration. We show either NRMSE (for NARMA10 and
VARDEL5) or the classification error rate (CER) for TIMIT. For
each task, we show performance for fully trained systems (Full)
vs those trained using the RC paradigm (Reservoir). Error bars
indicate standard deviations if available.
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relatively slow data transfer between the FPGA and the
computer. Implementing the full training algorithm on
the FPGA would drastically increase the speed of the
experiment. FPGAs have already been demonstrated to be
useful for controlling and training electro-optical signal
processors [34,35].
Nowadays, there is an increased interest in unconven-

tional, neuromorphic computing, as this could allow for
energy efficient computing, and may provide a solution to
the predicted end of Moore’s law [36]. These novel
approaches to computing will likely be made with compo-
nents that exhibit strong element-to-element variability, or
whose characteristics evolve slowly with time. Self-
learning hardware may be the solution that enables these
systems to fulfil their potential. The results in [6] and in this
Letter, therefore, constitute an important step towards
this goal.
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