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The stochastic kinetics of transcription is typically inferred from the distribution of RNA numbers in
individual cells. However, cellular RNA reflects additional processes downstream of transcription,
hampering this analysis. In contrast, nascent (actively transcribed) RNA closely reflects the kinetics of
transcription. We present a theoretical model for the stochastic kinetics of nascent RNA, which we solve to
obtain the probability distribution of nascent RNA per gene. The model allows us to evaluate the kinetic
parameters of transcription from single-cell measurements of nascent RNA. The model also predicts
surprising discontinuities in the distribution of nascent RNA, a feature which we verify experimentally.
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Transcription, the production of RNA from a gene, is a
stochastic process consisting of multiple single-molecule
events [1,2]. The inference of transcription kinetics is
typically addressed as an inverse problem, using the ergodic
assumption that population statistics contain the signature of
single-cell kinetics. Specifically, the number of RNA mol-
ecules from the gene is measured in many individual cells
simultaneously using microscopy-based methods [3–5],
and the measured RNA copy-number distribution is then
compared to the prediction from a stochastic model for
transcription kinetics [6–9]. This approach has been success-
fully used to demonstrate the bursty, non-Poissonian nature
of transcription [6–8] and to examine how transcription
kinetics are modulated by transcription factors [10–12].
However, mapping cellular RNA number to the under-

lying kinetics of transcription is hampered by the fact that
this number reflects additional processes downstream of
transcription, such as RNA degradation and its partitioning
during cell division. The stochasticity of both processes
may mask that of the transcription process [13,14].
Moreover, cellular RNA represents the combined contri-
butions from multiple copies of the same gene, whose
number changes through the cell cycle [14,15] and whose
activity may be correlated [15–18].
In contrast to total cellular RNA, nascent RNA—the RNA

molecules still actively transcribed at the gene—is not subject
to these effects, and therefore bearsmore closely the signature
of the transcription process. Recent progress in fluorescence
microscopy has allowed measuring the amount of nascent
RNA at individual genes in single cells [8,15,16,19–24].
However, the theoreticalmodeling of nascent RNAkinetics is
only at its infancy [8,16,23,25–27]. We still lack a theoretical
framework for mapping the single-cell measurements back
to the stochastic kinetics of transcription. The goal of this
Letter is to develop such a framework.
The model.—We model the kinetics of nascent RNA

as consisting of four steps [Fig. 1(a)]: Gene activation,

transcription initiation, RNA synthesis (elongation), and
release [8,16,23]. The gene fluctuates between two states,
active (state 1), where transcription initiation is allowed, and
inactive (state 0), where it is forbidden. Transitions between
states and the initiation of transcription in the active state
are modeled as Poisson processes, with rates k01, k10, and
kINI, respectively [6,9,28,29]. Following initiation, RNA
synthesis proceeds with a constant elongation speed VEL
[25,30], to a final length L. The completed RNA molecule
remains on the gene for a (deterministic) duration TS before
being released [22,31]. See Supplemental Material [32] for a
detailed discussion of model assumptions and of possible
extensions to the model.
The state of the system is defined by two random

variables, the gene state n (n ¼ 0; 1) and the amount of
nascent RNA m (m ≥ 0). m is obtained by summing over
all nascent RNA molecules present at the gene, and is
measured in units of a single complete (mature) RNA
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FIG. 1. A stochastic model of nascent RNA kinetics. (a) Model
schematic. (b) Different experimental observables that can be
describedby themodel: The number ofRNApolymerases (RNAPs)
on the gene (green), the amount of nascentRNA (red), and the signal
from single-molecule fluorescence in situ hybridization (smFISH)
probes (blue). (c) The contribution function corresponding to the
three observables in panel (b). In all cases, TS ¼ 0.
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[8,14,16]. Since nascent RNAs may be incomplete [14,22],
m can have noninteger values. Here we generalize m to
represent the experimentally measured signal from the
nascent RNA. The actual value of m thus depends on
the specific experimental observable [Fig. 1(b)]. For
example, in the case of single-molecule fluorescence in situ
hybridization (smFISH, [3–5]), commonly used for RNA
detection, m corresponds to the fluorescent signal emitted
by oligonucleotide probes bound to the RNA. In all cases,
the signal m at time t is determined by initiation events
happening within a time window TRES ¼ L=VEL þ TS (the
residence time of RNA at the gene) prior to t, and the
contribution from each nascent RNA molecule depends
only on its length at time t. We define the contribution
function GðlÞ to describe the signal from a single RNA
of length l [23]. Since l is determined by the difference
between the RNA initiation time ti and the observation time
t, we can rewrite G as a function of this time difference,
gðτÞ ¼ GðlðτÞÞ, with τ ¼ ti − t (−TRES ≤ τ ≤ 0) and
lðτÞ ¼ minfL;−VELτg [16]. The observed signal is then
given by mðtÞ ¼ P

t−TRES≤ti≤tgðti − tÞ. The form of gðτÞ
reflects the experimental observable. A few examples are
depicted in Fig. 1(c) and discussed in more detail below.
In all cases, gðτÞ is nonincreasing, with the delay TS in
RNA release represented as a time period with g ¼ 1.
General approach to solving the model.—Because m

exhibits a finite deterministic memory (over duration TRES),
we cannot easily write the master equation for the prob-
ability distribution Pðn;mÞ. To overcome this problem and
solve for the state of the system at time t, we first define the
pseudo-observablesnðτ; tÞ≡ nðtþ τÞ, which indicates the
gene state n at tþ τ, andmðτ; tÞ≡P

t−TRES≤ti≤tþτgðti − tÞ,
which describes the accumulation of m over the history
from t − TRES to tþ τ. Here, τ varies from −TRES to 0.
Notably, m ¼ 0 for τ ¼ −TRES and m ¼ m for τ ¼ 0.
Next, we write the master equation for the probability
distribution Pðn;mÞ [16],

dPðmÞ
dτ

¼ ðK −KINIÞPðmÞ þKINIP(m − gðτÞ): ð1Þ

Here, K ¼
�−k01 k10

k01 −k10
�
, KINI ¼

�
0 0

0 kINI

�
, and

PðmÞ ¼
�
Pð0;mÞ
Pð1;mÞ

�
. Note that we allow m to be neg-

ative, but Eq. (1) guarantees that Pðm < 0Þ ¼ 0 as long as
the initial conditions satisfy that condition. To obtain the
distribution of the true observables ðn;mÞ, we solve Eq. (1)
for the pseudo-observables ðn;mÞ and substitute τ ¼ 0
[Alternatively, Eq. (1) can be used to derive an equation for
Pðn;mÞ; see the Supplemental Material [32]].
We focus on the steady-state behavior of Pðn;mÞ. Using

the definition of m and the (easily calculable) steady-state
distribution for the gene state n, we obtain the initial

condition Pτ¼−TRES
ðmÞ ¼ ½δðmÞ=ðk01 þ k10Þ�

�
k10
k01

�
. To

solve Eq. (1), we transform Pðn;mÞ to its characteristic
function Ψðn;ωÞ≡ R∞

0 eimωPðn;mÞdm [46] to obtain

dΨðωÞ
dτ

¼
h
Kþ ðeiωgðτÞ − 1ÞKINI

i
ΨðωÞ; ð2Þ

with ΨðωÞ ¼
�
Ψð0;ωÞ
Ψð1;ωÞ

�
and the initial condition

Ψτ¼−TRES
ðωÞ ¼ ½1=ðk01 þ k10Þ�

�
k10
k01

�
. Equation (2) is

analogous to a quantum mechanical spin system with a
time-dependent interaction term. Its solution is therefore
given by the Dyson series [54]:

Ψτ¼0ðωÞ¼
�
Iþ

X∞

N¼1

Z
0

−TRES

dτ1 � � �
Z

τN−1

−TRES

dτN

×
Y

τ1≥���τi���≥τN
eiωgðτiÞVðτiÞ

�
eðK−KINIÞTRESΨτ¼−TRES

;

ð3Þ

where VðτÞ ¼ e−ðK−KINIÞτKINIeðK−KINIÞτ. Applying the
inverse transformation, we obtain the steady-state
distribution,

PðmÞ¼ 1

2π

Z þ∞

−∞
e−imωΨτ¼0ðωÞdω

¼
X∞

N¼0

PNðmÞ

¼
�
δðmÞþ

X∞

N¼1

Z
0

−TRES

dτ1 ���
Z

τN−1

−TRES

dτNδ

�
m−XN

i¼1

gðτiÞ
�

×T
�YN

i¼1

VðτiÞ
��

eðK−KINIÞTRESΨτ¼−TRES
; ð4Þ

where T is the time-ordering operator.

PNðmÞ ¼
�
Pð0; mjNÞ
Pð1; mjNÞ

�
is the vectorized probability of

observing m, given that the number of initiation events in
the time interval −TRES ≤ τ ≤ 0 was exactly N. In the
general case, PNðmÞ depends on the contribution function
gðτÞ, and therefore solving Eq. (4) requires knowing the
specific form of gðτÞ. Below we describe the solution for a
number of experimentally relevant examples. A closed-
form solution may not be always possible, but Pðn;mÞ can
be calculated numerically using the finite state projection
method [16,23,33,47] (Supplemental Material [32]). For
the purpose of comparing with experimental data, the
calculated distribution is typically marginalized over n, i.e.,
PðmÞ ¼ P

nPðn;mÞ. The moments of PðmÞ can be directly
calculated from Eq. (2) (Supplemental Material [32]):
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hmNi ¼ u · ð−iÞN dN

dωN Ψτ¼0ð0Þ

¼ u ·
XN

I¼1

X

0¼k0 < ki < kI|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
i¼1;���;I−1

¼N

Z
0

−TRES

dτ1 � � �

×
Z

τI−1

−TRES

dτIT
�YI

i¼1

�
ki
ki−1

�
gðτiÞki−ki−1WðτiÞ

�

×Ψτ¼−TRES
ð0Þ; ð5Þ

with u ¼ ð1; 1Þ and WðτÞ ¼ e−KτKINIeKτ. Below we use
these moments to explore the shape of PðmÞ as a function of
model parameters.
Solutions for specific contribution functions.—Case 1:

g ¼ 1. This corresponds to measuring the number of RNA
polymerases (RNAPs) currently transcribing the gene
[Fig. 1(c), panel I], or, equivalently, the number of nascent

RNA molecules present, irrespective of their lengths [8].
Here and below we assume for simplicity that TS ¼ 0
(i.e., RNA is released from the gene immediately upon
completion [16,19]), and (without loss of generality) set
TRES ¼ 1. Since g in this case does not take fractional
values, we replace the characteristic functions with
generating functions, Fnðz; τÞ≡P∞

m¼0 z
mPτðn;mÞ and

Fðz; τÞ≡ F0ðz; τÞ þ F1ðz; τÞ, and transform Eq. (1) to
obtain

F̈ þ ðk01 þ k10 þ ð1 − zÞkINIÞ _F þ ð1 − zÞkINIk01F ¼ 0;

ð6Þ

with the initial conditions Fðz;−1Þ ¼ 1, _Fðz;−1Þ ¼
ðz − 1Þ½kINIk01=ðk01 þ k10Þ�. Solving Eq. (6) and perform-
ing the inverse transformation allows us to calculate the
marginal probability distribution of m (see Supplemental
Material [32]),

PðmÞ¼e−
k01þk10þkINI

2

m!

�
kINI
2

�
m
��

k01þk10þkINI
2

− kINIk01
k01þk10

�Xm

i¼0

�
m

i

�
M1;iþ

Xm

i¼0

�
m

i

�
M0;iþm

k01−k10
k01þk10

Xm−1

i¼0

�
m−1

i

�
M1;i

�
;

ð7Þ

with Ms;i ¼
P

2l≥i
Pminðl;iÞ

w¼maxð0;i−lÞ
�

l
w

��
l

i − w

�
×

½ð−1Þii!=ð2l þ sÞ!�½ðkINI þ κ1Þ=2�l−w½ðkINI þ κ2Þ=2�l−iþw,
κ1;2 ¼ k10 − k01 � 2i

ffiffiffiffiffiffiffiffiffiffiffiffi
k10k01

p
. Equation (7) provides the

exact solution for the distribution of the number of tran-
scribing RNAPs at the gene.
Figure 2(a) depicts PðmÞ, calculated from Eq. (7), for

a few parameter values. Stochastic simulations of the
model, also shown, agree with the analytical calculation
(Supplemental Material [32]). For insight into the shape of
PðmÞ, we first note that gene-state transitions are typically
believed to be slow compared to both the rate of initiation
and the time to complete one RNA [8,16,55]. Specifically,
in the limit ðk01& k10Þ ≪ kINI and ðk01 or k10Þ ≪ 1, Eq. (7)
can be written as the weighed sum of two Poisson distribu-
tions, with rates 0 and kINI (Supplemental Material [32]).
In this limit, PðmÞ is also identical to the solution for the
commonly used two-state model for cellular RNA kinetics
[6,8,9,29], if we replace the residence time TRES with
the RNA degradation rate kD. Outside that limiting case,
however (as, e.g., in Ref. [16]), the two distributions can be
quite different (Fig. S1 in the Supplemental Material [32]).
To map how the shape of PðmÞ varies with transcription

parameters, we defined the bimodality coefficient,
β≡ 1=ðκ − γ2Þ, where γ is the skewness and κ the kurtosis
of PðmÞ [51]. Calculating β over a broad range of kinetic
rates, and using a threshold of βth ¼ 5=9 (corresponding to
a uniform distribution, see Supplemental Material [32]), we
found that PðmÞ is bimodal for k01 ∼ k10 ≲ 1 and kINI ≳ 1,

and unimodal outside this region [Fig. 2(b)]. The unimodal
region can be further divided based on the position of the
distribution peak, at m ¼ 0 or m > 0 [Fig. 2(b)].
Case 2: g ¼ −τ. This corresponds to measuring the total

length of nascent RNA, summed over multiple molecules
present at the gene [Fig. 1(c), panel II]. Experimentally, this
is achieved by using multiple smFISH probes covering
the length of the target gene [4]. In contrast to case 1 above,
m is now continuous, and Eq. (2) can be transformed to a
single equation for Ψð1;ωÞ (Supplemental Material [32]):
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FIG. 2. The probability distribution for the number of RNAPs at
the gene. (a) The exact solution for PðmÞ (binned to integer values,
red) for a few parameter values. Also shown are the results of
stochastic simulations (gray). (b) The bimodality coefficient β as a
function of k01, k10, and kINI was calculated and thresholded
(βth ¼ 5=9, bottom, red surface) to classify PðmÞ as either bimodal
or unimodal. The unimodal distributions were further classified
based on the peakposition. Parameter values corresponding to panel
(a) are marked as gray circles.
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Ψ̈ð1;ωÞ þ ½k01 þ k10 þ kINIð1 − e−iωτÞ� _Ψð1;ωÞ
− ½kINIðk01 − iωÞe−iωτ − kINIk01�Ψð1;ωÞ ¼ 0; ð8Þ

with the initial conditions Ψτ¼−1ð1;ωÞ¼ ½k01=ðk01þk10Þ�,
_Ψτ¼−1ð1;ωÞ ¼ ½k01kINI=ðk01 þ k10Þ�ðeiω − 1Þ. By solving
Eq. (8), we obtain the exact expression for ΨðωÞ≡
Ψð0;ωÞ þΨð1;ωÞ as a combination of confluent hyper-
geometric functions. Since transforming ΨðωÞ back to an
analytical form of PðmÞ is challenging, we proceed to
calculate PðmÞ using finite state projection [16,23,33].
The calculated PðmÞ exhibits the same three characteristic
shapes as in case 1, but the boundaries in parameter
space between regions exhibiting different shapes are
shifted by up to twofold (Fig. S2 in the Supplemental
Material [32]). Thus, the difference in contribution func-
tions can lead to different shapes of PðmÞ for the same
transcription parameters (another example of this effect is
described below).
Inferring transcription kinetics from single-cell

measurements of nascent RNA.—To demonstrate how
the model can be used to interpret experimental data,
we first examined the transcription of the hunchback (hb)
gene in embryos of the fruit fly, Drosophila melanogaster
([16] and the Supplemental Material [32]). Early in
development, hb is regulated by the transcription factor
Bicoid (Bcd), whose concentration forms a gradient along
the embryo [56] [Fig. 3(a)]. We measured the amount of
nascent RNA at individual copies of the hb gene [16], and
examined the distribution of nascent RNA over all cell
nuclei within a given region of the embryo (corresponding
to a given Bcd concentration) [Fig. 3(a)]. Next, we solved
Eq. (1) using gðτÞ that corresponds to the set of smFISH
probes used in the experiment [16], and used maximum
likelihood estimation to fit the model to the experimental
data. The model was able to capture the change in PðmÞ
shape along the embryo [Fig. 3(a)]. We found that
the regulatory effect of Bcd is to increase k01 (>50-fold
along a single embryo) while k10 and kINI remain almost
unchanged [Fig. 3(a)]. Thus, the model allowed us to
identify what aspect of hb kinetics is modulated during
gene regulation [16].
In the second example, we labeled the two halves of the

same gene using two different smFISH probe sets carrying
two different fluorescent dyes [Fig. 3(b) and Supplemental
Material [32]]. In the experiment, the two probe sets yielded
very different signal distributions PðmÞ (both normalized to
the signal from a single full-length RNA). In particular, the
signal from the first half of the gene was spread ∼ twofold
wider on them axis than that from the second half [Fig. 3(b)].
Since both probe sets label the same gene, the two data sets
should be describable using the same kinetic parameters, the
only difference being the form of gðτÞ, which we calculated
directly from the probe positions on the gene [Fig. 3(b)]. In
agreement with this hypothesis, we were able to fit the two
experimental distributions (as well as the joint distribution)

using a single set of transcription parameters [Fig. 3(b) and
Supplemental Material [32]].
Discontinuities in PðmÞ.—As noted above, a distinctive

feature of nascent RNA, in contrast to mature cellular RNA,
is that it can be approximated as continuous [4,5,16]. When
examining the behavior of our model in the case g ¼ −τ
(i.e., measuring the total amount of nascent RNA at the
gene), we found that, for multiple parameter choices, PðmÞ
appears discontinuous at integer values of m [insets of
Fig. S2(a) in the Supplemental Material [32]]. This
discontinuity was consistent with the appearance of terms
of order 1=ω in the characteristic function ΨðωÞ [57]. The
source of the discontinuity can be understood by noting
that, in Eq. (4), PðmÞ is written as the sum of PNðmÞ, the
probabilities of observing m given that the number of
initiation events in the time interval −TRES ≤ τ ≤ 0 is N
(equivalently, the number of RNAPs present at the gene is
N). Since, for a given N,m cannot exceedN, the result may
be a discontinuity of PðmÞ or its derivatives at integer
values. Specifically, since P0ðmÞ ∝ δðmÞ, PðmÞ has an
infinite discontinuity at m ¼ 0. P1ðmÞ is nonzero only for
m ≤ 1; hence, PðmÞ has a jump discontinuity at m ¼ 1.
For higher values of N, it can be shown that the ðN − 1Þth
derivative of PðmÞ has a jump discontinuity at m ¼ N
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(a) Regulation of the hb gene by Bcd. Top left, Bcd forms a
concentration gradient along the anterior-posterior axis of the
Drosophila embryo. Gray circles indicate individual cell nuclei.
Three representative regions of the embryo are highlighted in pink,
corresponding to high (I), medium (II), and low (III) Bcd concen-
trations.Right, themeasured distribution of nascenthbRNAat each
region (smFISH data from a single embryo, >200 data points per
histogram, bin width ¼ 3), and the corresponding theoretical fit
(red). Bottom left, the estimated transcription parameters (dots),
superimposed on the modality phase plane ofPðmÞ calculated as in
Fig. 2(b). (b) The effect of smFISH probe positions. Two different
sets of probes were designed against the bcd3-lacZ reporter gene,
targeting the first half (blue) and second half (magenta) of the gene.
The two sets yielded different distributions of nascent RNA (top and
bottom,>250 data points from a single embryo, at 0.2–0.3 embryo
length, bin width ¼ 4). Using the contribution functions calculated
from the probe positions on the gene (insets) yielded a good fit
between the model and experimental data.
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(Supplemental Material [32]). For each point of disconti-
nuity, the magnitude of the jump is

ΔPN ¼ dN−1PðmÞ
dmN−1

����
m¼N−

− dN−1PðmÞ
dmN−1

����
m¼Nþ

¼ ð−1ÞN−1
N!

u · eðK−KINIÞKN
INIΨτ¼−1: ð9Þ

We explore this feature in Fig. 4. For the parameters used
(k01 ¼ k10 ¼ 0.1, kINI ¼ 50), zooming in to the low range
of m reveals a sharp drop of PðmÞ at m ¼ 1 [Fig. 4(a)].
At higher integer m’s, the drop becomes smaller and is
shifted to the left [Fig. 4(a)]. The drop reflects the
discontinuity of PðmÞ (or its derivatives) at integer m’s.
Each drop is preceded by an increase of PðmÞ, resulting in a
peak at m → N− [Fig. 4(b)]. This peak, in turn, is due to
the fact that, when kINI ≫ N and gene transitions are slow
(k01, k10 ≪ 1); the two most probable ways of observing
exactly N initiation events are for the gene to be active only
at the beginning (τ → −Tþ

RES) or the end (τ → 0−) of the
time window, resulting in maxima of PNðmÞ at m → N−
and m → 0þ, respectively [Fig. 4(b)].
To ask whether these features of PðmÞ can be detected

experimentally, we first defined the discontinuity factor

r≡ ΔP1=Pðm ¼ 1þÞ to characterize the magnitude of
the jump in the distribution of nascent RNA. Calculating
r over a wide range of kinetic rates indicated that it would
be high (>0.1) for k01 ≲ 101 [Fig. 4(c)]. This range covers
the estimated parameters in multiple biological systems
[16,23,58], including our measurements in Drosophila
(Fig. 3). To then try and detect this feature in our
experimental data, we focused on the small m (<6.5)
range, where the peaks in PðmÞ are expected to be the
highest [Fig. 4(a)]. To improve data sampling, we defined
the variable m0 ¼ m − ½m� (where ½·� denotes the nearest
integer) such that all m values are mapped into the range
½ − 0.5; 0.5Þ. Using this procedure, we detected a peak to
the left of m0 ¼ 0, as predicted by the model [Fig. 4(d)].
Allowing for the finite binding probability of smFISH
probes [16,53], we were able to successfully reproduce the
shape of the folded probability distribution [Fig. 4(d)], see
Supplemental Material [32]). Thus, the experimental data
support the theoretical prediction of discontinuity in the
distribution of nascent RNA. The periodic discontinuities
can be used to identify the signal intensity corresponding
to a single RNA, thus improving the precision of RNA
counting using smFISH [3,5,14,16].
Conclusion.—We presented a theoretical framework for

connecting the stochastic kinetics of transcription with the
resulting probability distribution of nascent RNA at the
gene. By changing the form of the contribution function
gðτÞ, the model can be used to describe different exper-
imental observables. The model allowed us to interpret
experimental data, extract the kinetic parameters of gene
activity, and identify how the kinetics vary under the
regulatory influence of a transcription factor. The model
also predicted a hitherto unobserved feature of disconti-
nuities and periodic peaks in nascent RNA distribution,
which we were able to validate experimentally. To further
improve the estimation of transcription parameters, the
model for nascent RNA can be combined with one for the
total cellular RNA [15] and compared to experimental
measurements of both species simultaneously [3,6,8,15]
(Supplemental Material [32]). Beyond the steady-state
distribution discussed here, solving for the time-dependent
behavior of the model (Supplemental Material [32]) can
allow a direct comparison with live-cell measurements of
nascent RNA [19,21,22].
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FIG. 4. Discontinuities in nascent RNA distribution at integer m
values. (a) The calculated distribution of nascent RNA at small
values ofm, for k01 ¼ k10 ¼ 0.1, kINI ¼ 50. A larger range ofm is
shown in the inset. The range of m was divided into windows
covering −0.5 to 0.5 around each integer (colored shading). (b)
The origin of discontinuity at m ¼ 1. The total probability of
observingm is a marginalization over different numbers of RNAPs
on the gene (plotted for N ¼ 1; 2; 3). (c) The discontinuity factor r
as a function of k01, k10, and kINI was calculated and thresholded
(rth ¼ 0.1, left, red surface). Black dot indicates the experimental
data analyzed in panel (d). (d) The experimental signature of PðmÞ
discontinuity. Nascent RNA from bcd3-lacZ was measured using
smFISH (at 0.1–0.3 embryo length, 23 embryos). The distribution
of m0, the deviation of m from the nearest integer, was calculated
(gray, 3.5 ≤ m < 6.5, ∼500 data points, bin width ¼ 0.1) and
compared to model predictions with (red) and without (dashed
blue) incorporating the effect of finite probe binding probability p0.
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