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We calculate the resonant inelastic x-ray scattering (RIXS) response of the Kitaev honeycomb model, an
exactly solvable quantum-spin-liquid model with fractionalized Majorana and flux excitations. We find that
the fundamental RIXS channels, the spin-conserving (SC) and the non-spin-conserving (NSC) ones, do not
interfere and give completely different responses. SC RIXS picks up exclusively the Majorana sector with a
pronounced momentum dispersion, whereas NSC RIXS also creates immobile fluxes, thereby rendering
the response only weakly momentum dependent, as in the spin structure factor measured by inelastic
neutron scattering. RIXS can, therefore, pick up the fractionalized excitations of the Kitaev spin liquid
separately, making it a sensitive probe to detect spin-liquid character in potential material incarnations of
the Kitaev honeycomb model.
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Quantum spins in a solid can, instead of ordering in a
definite pattern, form a fluid type of ground state: a
quantum spin liquid (QSL) [1]. Theory predicts a remark-
able set of collective phenomena to occur in such QSLs,
including topological ground-state degeneracy, long-range
entanglement, and fractionalized excitations. Beyond
their clear theoretical appeal, these exotic properties also
find applications in the field of topological quantum
computing [2].
The Kitaev honeycomb model is an exactly solvable yet

realistic spin model with a QSL ground state [3].
Neighboring S ¼ 1=2 spins σx;y;zr at the sites r of the
honeycomb lattice are coupled via different spin compo-
nents along the three bonds connected to any given site.
The Hamiltonian is then

HK ¼ −Jx
X
hr;r0ix

σxrσ
x
r0 − Jy

X
hr;r0iy

σyrσ
y
r0 − Jz

X
hr;r0iz

σzrσ
z
r0 ; ð1Þ

where Jx;y;z are the coupling constants for the three types of
bonds x, y, and z [see Fig. 1(a)]. Depending on Jx;y;z, the
model has two distinct phases. In the gapped (gapless)
phase, the ground state is a gapped (gapless) QSL. The
spins fractionalize into two types of elementary excitations
in both phases: Majorana fermions and emergent gauge
fluxes.
From an experimental standpoint, finding a physical

realization of the Kitaev honeycomb model has proven to
be a challenging task. So far, three types of honeycomb
systems have been proposed as candidate incarnations of
HK: the iridates α-A2IrO3 with A ¼ Na or Li [5–7], the
ruthenate α-RuCl3 [8,9], and ultracold atoms in optical
lattices [10]. In the iridates and the ruthenate, however, a

potential spin-liquid phase at low temperatures is pre-
empted by magnetic order due to residual magnetic
interactions beyond HK [6,11]. Nevertheless, since these
interactions are typically small, the higher-energy excita-
tions above the energy scale setting the magnetic order are
expected to be governed by HK [9].
Given that QSLs are inherently defined in terms of a

property that they do not have (i.e., magnetic order), their
experimental identification and characterization are far
from obvious [1]. One potential hallmark of QSLs is the

FIG. 1. (a) Illustration of the honeycomb lattice. Sites in
sublattice A (B) are marked by white (black) circles, while x,
y, and z bonds are marked by dotted, dashed, and solid lines,
respectively. (b) Flux excitations ϕ around the photon-scattering
site r (white circle) in the final states jmi of the three fundamental
NSC RIXS channels with amplitudes ∝ hmjσx;y;zr e−it ~HðrÞj0i [see
Eq. (3)], respectively. (c) Illustration of the standard Brillouin
zone (BZ), and the extended Brillouin zone (EBZ) with respect to
which the RIXS response is periodic. The SC RIXS response in
Fig. 3 is plotted at special points (black squares) [4] and generic
representative points (red squares).
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presence of fractionalized magnetic excitations. For the
Kitaev spin liquid, it has been proposed that signatures of
these excitations can be observed by inelastic neutron
scattering (INS) [12,13] and by Raman scattering (RS)
with visible light [14]. However, both of these methods
have important limitations. In particular, neither of them
can directly probe the highly dispersive gapless Majorana
excitations. INS displays an overall energy gap and shows
little momentum dispersion because it creates two immo-
bile flux excitations that dominate the response. RS creates
two Majorana excitations only and measures their density
of states, but it is an inherently zero-momentum probe and
does not provide any information on their dispersion.
Using the exact solution of the Kitaev honeycomb

model, we demonstrate in this Letter that resonant inelastic
x-ray scattering (RIXS) can probe each type of fraction-
alized excitation directly and independently. We establish
that the four fundamental RIXS channels, the spin-
conserving (SC) and the three non-spin-conserving
(NSC) ones, do not interfere and give completely different
responses. The SC RIXS channel does not create any fluxes
and picks up exclusively the Majorana fermions with a
pronounced momentum dispersion. Conversely, the NSC
RIXS channels involve flux creation and, therefore, show
little momentum dependence. In the physical regime, they
are found to map onto the respective components of the
spin structure factor measured by INS. Since the RIXS
response directly quantifies both Majorana and flux exci-
tations, it can serve as an effective probe of Kitaev-spin-
liquid character in any experimental candidate material.
Formalism.—When calculating the RIXS response, we

consider the L3 edge of the α-A2IrO3 iridates with the Ir4þ

ion being in a 5d5 configuration. However, as we later
argue, our results directly translate to other edges of Ir4þ or
Ru3þ and also to similar responses in ultracold atomic
systems. RIXS is a second-order process consisting of two
dipole transitions [15]. First, a photon is absorbed, and an
electron from the 2p core shell is excited into the 5d
valence shell, thereby creating a 2p core hole and an extra
5d electron. Second, an electron from the 5d valence shell
decays into the 2p core hole, and a photon is emitted. The
low-energy physics of the 5d electrons at each Ir4þ ion is
governed by a J ¼ 1=2 Kramers doublet in the t2g orbitals,
and we assume that H ≡HK is the effective low-energy
Hamiltonian acting on these Kramers doublets [5]. In terms
of the corresponding Kitaev model, the 5d6 configuration
in the intermediate state is then described as a vacancy or,
equivalently, a nonmagnetic impurity.
The initial and the final states of the RIXS process are

j0i ⊗ jQ; ϵi and jmi ⊗ jQ0; ϵ0i, respectively, where j0i is
the ground state of the Kitaev model, jmi is a generic
eigenstate with energy Em with respect to j0i, while
Q (Q0) is the momentum, and ϵ (ϵ0) is the polarization
of the incident (scattered) photon. During the RIXS
process, a momentum q≡Q −Q0 and an energy

ω ¼ Em is transferred from the photon to the Kitaev
spin liquid. The total RIXS intensity is Iðω;qÞ ¼ P

m
jPα;βTαβAαβðm;qÞj2δðω − EmÞ, where Tαβ is a spin-space
polarization tensor depending on the microscopic details of
the RIXS process (i.e., the ion type, the edge type, and the
photon polarizations), and Aαβðm;qÞ is the scattering
amplitude from j0i ⊗ jQ; ϵi to jmi ⊗ jQ0; ϵ0i. This ampli-
tude is given by the Kramers-Heisenberg formula:

Aαβðm;qÞ ¼
X
r; ~nr

hmjdr;αj ~nrih ~nrjd†r;βj0i
Ω − E ~n þ iΓ

eiq·r; ð2Þ

where Γ is the inverse lifetime of the core hole, Ω is the
energy of the incident photon with respect to the resonance
energy (i.e., the energy difference between the 5d and the
2p shells), and the operator d†r;σ promotes a 2p electron
with spin σ at site r into a 5d state at the same site. In terms
of the Kitaev model, this operation is equivalent to an
electron with spin −σ being annihilated at site r. The
intermediate state j ~nri is then a generic eigenstate of the
Kitaev model with a single vacancy at site r that has energy
E ~n with respect to the ground state j~0ri of the same model.
Note that we use a tilde to distinguish the model with a
vacancy (intermediate states) from the one without a
vacancy (initial and final states).
The four fundamental RIXS channels are introduced by

decomposing the polarization tensor into Tαβ ¼ Pησ
η
αβ with

η ¼ f0; x; y; zg, where σ0 is the identitymatrix, and σx;y;z are
the Paulimatrices. In the SCchannelwithTαβ ∝ σ0αβ, the spin
of the 5d valence shell does not change during the RIXS
process, while in the three NSC channels with Tαβ ∝ σx;y;zαβ ,
the same spin is rotated by π around the x, y, z axes,
respectively. For the L3 edge of the Ir4þ ion, the SC
coefficient is P0 ¼ ϵ0� · ϵ, while the NSC coefficients are
Px ¼ iðϵ0�yϵz − ϵ0�zϵyÞ and Py;z its cyclic permutations [16].
Our first main result is that the four RIXS channels do

not interfere in the case of the Kitaev model because they
result in mutually orthogonal final states. In particular, the
final state has no flux excitations for the SC RIXS channel,
while it has two flux excitations separated by x, y, z
bonds for the three NSC RIXS channels, respectively [see
Fig. 1(b)]. We provide a detailed derivation of this result in
the Supplemental Material [17]. For any scattering geom-
etry and polarizations, the total RIXS intensity Iðω;qÞ is
then a sum of four individual intensities Iηðω;qÞ ¼P

mjAηðm;qÞj2δðω − EmÞ corresponding to the four chan-
nels η ¼ f0; x; y; zg. It is derived in the Supplemental
Material [17] that the individual RIXS amplitudes are

Aηðm;qÞ ∝
X
r

Z
∞

0

dte−ΓtþiΩtþiq·rhmjσηre−it ~HðrÞj0i; ð3Þ

where ~HðrÞ ¼ H þP
κ¼x;y;zJκσ

κ
rσ

κ
κðrÞ is the Hamiltonian of

the Kitaev model with a single vacancy at site r. The spin at
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site r is effectively removed from the model by being
decoupled from its neighbors at sites κðrÞ [18].
Since the inverse lifetime Γ is by far the largest energy

scale in both the iridates α-A2IrO3 [19] and the ruthenate
α-RuCl3 [9,20], we employ the fast-collision approxima-
tion to RIXS, for which Γ → ∞ and, hence, t ∼ 1=Γ → 0.
Expanding e−it ~HðrÞ up to first order in Jx;y;z=Γ, integrating
over t, and demanding Hj0i ¼ 0 by adding a trivial
constant term toH, the RIXS amplitudes in Eq. (3) become

Aηðm;qÞ ∝
X
r

eiq·rhmjσηr
�
1 −

i ~HðrÞ
Γ

�
j0i

¼
X
r

eiq·rhmjσηr
�
1 −

i
Γ

X
κ

JκσκrσκκðrÞ

�
j0i; ð4Þ

wherewe also setΩ ¼ 0 for simplicity by recognizing that its
exact value does not matter as long asΩ ≪ Γ.We emphasize
that the final form of Eq. (4) is expected to be generic beyond
the L3 edge of the Ir4þ ion. For any relevant RIXS process,
the couplings in the intermediate state are perturbed (i.e.,
weakened or switched off) around the photon-scattering site
r, and an analogous calculation in the fast-collision approxi-
mation would then give an identical first-order result, up to a
potential renormalization of Γ.
Given that the Kitaevmodel is exactly solvable both in the

presence and in the absence of a vacancy [18,21], the RIXS
amplitudes in Eq. (4) can be evaluated exactly. Our calcu-
lation follows the usual procedure [3]. We first take care of
the static (and local) fluxes, then introduce Majorana
fermions to obtain a quadratic fermion problem for each
flux configuration, and finally deal with the resulting free-
fermion problems by means of standard methods. However,
due to technical reasons (see the Supplemental Material
[17]), the RIXS intensities are calculated differently for the
SC and the NSC channels [22].
For the SC channel, we evaluate A0ðm;qÞ for each

individual final state jmi and obtain I0ðω;qÞ as a histogram
of jA0ðm;qÞj2 in terms of the final-state energies ω ¼ Em.
In the language of Ref. [22], this method corresponds to the
few-particle approach. Indeed, it follows from Eq. (4) that,
up to first order in Jx;y;z=Γ, there are two types of final
states with a nonzero RIXS amplitude: jmi ¼ j0i with no
excitations at all and jmi ≠ j0i with no flux and two
fermion excitations. Since scattering back into the ground
state j0i corresponds to a purely elastic process, we restrict
our attention to the jmi ≠ j0i final states with two fermion
excitations at momenta k and q − k. The energy of such a
state is Em ¼ εk þ εq−k, where εk ¼ 2jλkj is the energy of
a single fermion and λk ≡P

κ¼x;y;zJκe
ik·r̂κ in terms of the

three bond vectors r̂x;y;z pointing from any site in sublattice
A to its respective neighbors in sublattice B [see Fig. 1(a)].
The SC RIXS intensity is then derived in the Supplemental
Material [17] to be

I0ðω;qÞ ∝
Z
BZ

d2kδðω − εk − εq−kÞ½εk − εq−k�2

× j1 − eiφkeiφq−k j2; ð5Þ

where eiφk ≡ λk=jλkj is a phase factor between the two
sublattices. Since the bond vectors r̂x;y;z are not lattice
vectors, the intensity is not periodic with respect to the
standard BZ but with respect to the EBZ illustrated in
Fig. 1(c).
For the NSC channels, we consider the RIXS intensity

directly and rewrite it as Iκðω;qÞ ∝
Rþ∞
−∞ dseiωsKκðs;qÞ in

terms of a timelike variable s. It is derived in the
Supplemental Material [17] that the kernel of the resulting
integral takes the form

Kκðs;qÞ ¼ h0j½σκ0ei ~Hð0Þ=Γ þ σκr̂κe
i ~Hðr̂κÞ=Γ−iq·r̂κ �e−isH

× ½σκ0e−i ~Hð0Þ=Γ þ σκr̂κe
−i ~Hðr̂κÞ=Γþiq·r̂κ �j0i;

where 0 is any site in sublattice A. In the language of
Ref. [22], this method corresponds to the determinant
approach. Indeed, the ground-state expectation values in
Kκðs;qÞ can be evaluated as functional determinants (see
the Supplemental Material [17]). We remark that the NSC
RIXS response Iκðω;qÞ reduces to the corresponding
component κ of the spin structure factor [13] in the limit
of Γ → ∞. This result is in contrast with SC RIXS, where
the inelastic response disappears in the same limit.
Results.—We first discuss the momentum-integrated

RIXS intensities IηðωÞ ¼
R
EBZ d

2qIηðω;qÞ. In Fig. 2, the
SC and NSC responses are plotted for representative points
of both the gapless (a) and the gapped (b) phases. All of our
responses are universal in the sense that their functional
forms do not depend on the precise value of Γ ≫ Jx;y;z.
Also, some or all of the NSC responses can be identical due
to symmetry. Since the maximal fermion energy is
2
P

κJκ ¼ 6J0 at both representative points, the responses
with maximal energies ≈6J0 and≈12J0 can be identified as
predominantly one-fermion and two-fermion responses,
respectively [22]. Similarly, any delta peak close to zero
energy corresponds to a zero-fermion response. Unlike the
NSC responses, the SC response is always dominated by
two-fermion excitations. Furthermore, the SC and NSC
responses have different low-energy behavior in the gapless
phase. The NSC response has an energy gap due to flux
creation, while the SC response is found to vanish as ∝ ω5

in the limit of ω → 0. Three powers of ω come from the
two-fermion density of states around the Dirac points [23],
and two further powers appear due to the factor ½εk −
εq−k�2 in Eq. (5), which indicates that the fermions at lower
energies are perturbed less by the presence of the
vacancy [24].
The differences between the SC and NSC responses

become even more evident when we consider the
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momentum-resolved RIXS intensities Iηðω;qÞ. In Fig. 3,
the SC response is plotted for the representative points
of the two phases. The fractionalized nature of the
excitations is indicated by the lack of delta peaks corre-
sponding to well-defined ωðqÞ dispersions in the spectrum.
Nevertheless, the response has a pronounced momentum
dependence and is, therefore, able to probe the dispersions
of the individual excitations directly. For example, in the
gapless phase, the Dirac points K in the fermion dispersion
manifest themselves in gapless responses around the Γ, K,
and ~K points of the EBZ. However, the response actually
vanishes at the Γ and ~K points due to the factor ½εk − εq−k�2
in Eq. (5) and the fermion dispersion being symmetric
around these points. There is a further depression of the

response around the Γ point due to a destructive interference
between the two sublattices, as indicated by theminus sign in
the factor j1 − eiφkeiφq−k j2 of Eq. (5). This effect arises
because the fermions transform projectively under inversion
and is, therefore, a direct signature of their fractionalized
nature [25]. We also remark that, unlike the NSC responses,
the SC response is invariant under Jx;y;z → −Jx;y;z.
In contrast to the SC response, the NSC responses show

little momentum dependence because the localized fluxes
created by them can absorb momentum well. In fact, we
find that the three NSC RIXS components are virtually
indistinguishable from the corresponding components of
the spin structure factor [13] in the Γ=J0 ≳ 100 regime,
which is physically relevant for both α-A2IrO3 [19] and
α-RuCl3 [9,20]. NSC RIXS can, therefore, fully determine
the spin structure factor in the iridates, for which INS is
challenging due to the large neutron-absorption cross
section of iridium. Although RIXS is currently limited
by its energy resolution Δω ∼ J0 [26], this technique has
been improving rapidly, and, therefore, Δω ≪ J0 is a
distinct possibility for the near future.
We finally discuss the RIXS responses at a generic point

of the Kitaev-spin-liquid phase, which corresponds to a
generic time-reversal-invariant perturbation with respect to
HK . For the NSC RIXS channels, the results in Ref. [23]
are directly applicable and imply that the response is
generically gapless. For the SC RIXS channel, a similar
analysis indicates that the response no longer vanishes at
the Γ and ~K points and that I0ðωÞ takes the low-energy
form of ∝ ω3 instead of ∝ ω5 in the most generic case.
However, since the characteristic lower edge of the spec-
trum in Fig. 3 is robust, we expect that SC RIXS remains an
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effective probe of the fermion dispersion for a generic
Kitaev spin liquid. Furthermore, some higher-energy fea-
tures are believed to persist even beyond the phase
transition into the magnetically ordered phase [9].
Conclusions.—Calculating the exact RIXS response of the

Kitaev honeycomb model, we have found that the four
fundamental RIXS channels, the SC and the three NSC ones,
do not interfere and correspond to completely different
responses. In the physically relevant regime, the SC response
displays a pronounced momentum dependence and picks up
the gaplessMajorana fermions, while the NSC responses are
only weakly momentum dependent and recover the respec-
tive components of the spin structure factor. We, therefore,
believe that RIXS can serve as an effective probe of spin-
liquid character in present and future candidate materials for
the realization of the Kitaev honeycomb model.

We thank D. A. Abanin, J. T. Chalker, D. V. Efremov,
and I. Rousochatzakis for useful discussions. G. B. H. is
supported by a fellowship from the Gordon and Betty
Moore Foundation (Grant No. 4304). N. P. is supported by
the NSF Grant No. DMR-1511768. J. v. d. B. acknowl-
edges support from the Deutsche Forschungsgemeinschaft
via Grant No. SFB 1143 and the Harvard-MIT CUA. This
research was supported in part by the National Science
Foundation under Grant No. NSF PHY11-25915.

[1] L. Balents, Nature (London) 464, 199 (2010); L. Savary and
L. Balents, arXiv:1601.03742.

[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[3] A. Y. Kitaev, Ann. Phys. (Amsterdam) 321, 2 (2006).
[4] Special points with and without dashes are related by

inversion and have identical responses for all Jx;y;z, while
those with different x, y, z subscripts are related by threefold
rotation and only have identical responses when
Jx ¼ Jy ¼ Jz.

[5] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

[6] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
105, 027204 (2010); J. Chaloupka, G. Jackeli, and G.
Khaliullin, Phys. Rev. Lett. 110, 097204 (2013).

[7] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412 (2010);
X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J. Kim,
H. Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill, Phys.
Rev. B 83, 220403(R) (2011); Y. Singh, S. Manni, J.
Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P.
Gegenwart, Phys. Rev. Lett. 108, 127203 (2012); S. K.
Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I.
Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegen-
wart, K. R. Choi, S.-W. Cheong, P. J. Baker, C. Stock, and J.
Taylor, Phys. Rev. Lett. 108, 127204 (2012); F. Ye, S. Chi,
H. Cao, B. C. Chakoumakos, J. A. Fernandez-Baca, R.
Custelcean, T. F. Qi, O. B. Korneta, and G. Cao, Phys.
Rev. B 85, 180403(R) (2012); R. Comin, G. Levy, B.
Ludbrook, Z.-H. Zhu, C. N. Veenstra, J. A. Rosen, Y. Singh,
P. Gegenwart, D. Stricker, J. N. Hancock, D. van der Marel,

I. S. Elfimov, and A. Damascelli, Phys. Rev. Lett. 109,
266406 (2012).

[8] K.W. Plumb, J. P. Clancy, L. J. Sandilands, V. V. Shankar,
Y. F. Hu, K. S. Burch, H.-Y. Kee, and Y.-J. Kim, Phys. Rev.
B 90, 041112(R) (2014); L. J. Sandilands, Y. Tian, K. W.
Plumb, Y.-J. Kim, and K. S. Burch, Phys. Rev. Lett. 114,
147201 (2015); J. A. Sears, M. Songvilay, K. W. Plumb,
J. P. Clancy, Y. Qiu, Y. Zhao, D. Parshall, and Y.-J. Kim,
Phys. Rev. B 91, 144420 (2015); R. D. Johnson, S. C.
Williams, A. A. Haghighirad, J. Singleton, V. Zapf, P.
Manuel, I. I. Mazin, Y. Li, H. O. Jeschke, R. Valentí,
and R. Coldea, Phys. Rev. B 92, 235119 (2015); L. J.
Sandilands, Y. Tian, A. A. Reijnders, H.-S. Kim, K.W.
Plumb, Y.-J. Kim, H.-Y. Kee, and K. S. Burch, Phys. Rev. B
93, 075144 (2016).

[9] A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li,
M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J.
Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D.
A. Tennant, D. G. Mandrus, and S. E. Nagler, Nat. Mater.
15, 733 (2016).

[10] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett.
91, 090402 (2003).

[11] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Phys. Rev.
Lett. 112, 077204 (2014); Y. Yamaji, Y. Nomura,
M. Kurita, R. Arita, and M. Imada, Phys. Rev. Lett. 113,
107201 (2014); Y. Sizyuk, C. Price, P. Wölfle,
and N. B. Perkins, Phys. Rev. B 90, 155126 (2014); I.
Rousochatzakis, J. Reuther, R. Thomale, S. Rachel,
and N. B. Perkins, Phys. Rev. X 5, 041035 (2015); S. M.
Winter, Y. Li, H. O. Jeschke, and R. Valentí, Phys. Rev. B
93, 214431 (2016).

[12] G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett.
98, 247201 (2007).

[13] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner,
Phys. Rev. Lett. 112, 207203 (2014).

[14] J. Knolle, G.-W. Chern, D. L. Kovrizhin, R. Moessner, and
N. B. Perkins, Phys. Rev. Lett. 113, 187201 (2014).

[15] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P.
Hill, and J. van den Brink, Rev. Mod. Phys. 83, 705 (2011);
L. Savary and T. Senthil, arXiv:1506.04752.

[16] L. J. P. Ament, G. Khaliullin, and J. van den Brink, Phys.
Rev. B 84, 020403(R) (2011).

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.127203 for de-
tailed derivations of our results.

[18] G. B. Halász, J. T. Chalker, and R. Moessner, Phys. Rev. B
90, 035145 (2014).

[19] J. P. Clancy, N. Chen, C. Y. Kim, W. F. Chen, K. W. Plumb,
B. C. Jeon, T. W. Noh, and Y.-J. Kim, Phys. Rev. B 86,
195131 (2012); V. M. Katukuri, S. Nishimoto, V.
Yushankhai, A. Stoyanova, H. Kandpal, S. Choi, R. Coldea,
I. Rousochatzakis, L. Hozoi, and J. van den Brink, New J.
Phys. 16, 013056 (2014).

[20] A. Koitzsch, C. Habenicht, E. Müller, M. Knupfer,
B. Büchner, H. Kandpal, J. van den Brink, D.
Nowak, A. Isaeva, and T. Doert, arXiv:1603.05507;
C.-H. Hsu, B.-C. Chang, Y.-F. Chen, H.-C. Ku, and H.-J.
Lin (unpublished).

PRL 117, 127203 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

16 SEPTEMBER 2016

127203-5

http://dx.doi.org/10.1038/nature08917
http://arXiv.org/abs/1601.03742
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.110.097204
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.83.220403
http://dx.doi.org/10.1103/PhysRevB.83.220403
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevB.85.180403
http://dx.doi.org/10.1103/PhysRevB.85.180403
http://dx.doi.org/10.1103/PhysRevLett.109.266406
http://dx.doi.org/10.1103/PhysRevLett.109.266406
http://dx.doi.org/10.1103/PhysRevB.90.041112
http://dx.doi.org/10.1103/PhysRevB.90.041112
http://dx.doi.org/10.1103/PhysRevLett.114.147201
http://dx.doi.org/10.1103/PhysRevLett.114.147201
http://dx.doi.org/10.1103/PhysRevB.91.144420
http://dx.doi.org/10.1103/PhysRevB.92.235119
http://dx.doi.org/10.1103/PhysRevB.93.075144
http://dx.doi.org/10.1103/PhysRevB.93.075144
http://dx.doi.org/10.1038/nmat4604
http://dx.doi.org/10.1038/nmat4604
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.112.077204
http://dx.doi.org/10.1103/PhysRevLett.112.077204
http://dx.doi.org/10.1103/PhysRevLett.113.107201
http://dx.doi.org/10.1103/PhysRevLett.113.107201
http://dx.doi.org/10.1103/PhysRevB.90.155126
http://dx.doi.org/10.1103/PhysRevX.5.041035
http://dx.doi.org/10.1103/PhysRevB.93.214431
http://dx.doi.org/10.1103/PhysRevB.93.214431
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.112.207203
http://dx.doi.org/10.1103/PhysRevLett.113.187201
http://dx.doi.org/10.1103/RevModPhys.83.705
http://arXiv.org/abs/1506.04752
http://dx.doi.org/10.1103/PhysRevB.84.020403
http://dx.doi.org/10.1103/PhysRevB.84.020403
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.127203
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.127203
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.127203
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.127203
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.127203
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.127203
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.127203
http://dx.doi.org/10.1103/PhysRevB.90.035145
http://dx.doi.org/10.1103/PhysRevB.90.035145
http://dx.doi.org/10.1103/PhysRevB.86.195131
http://dx.doi.org/10.1103/PhysRevB.86.195131
http://dx.doi.org/10.1088/1367-2630/16/1/013056
http://dx.doi.org/10.1088/1367-2630/16/1/013056
http://arXiv.org/abs/1603.05507


[21] A. J. Willans, J. T. Chalker, and R. Moessner, Phys. Rev.
Lett. 104, 237203 (2010); A. J. Willans, J. T. Chalker, and
R. Moessner, Phys. Rev. B 84, 115146 (2011).

[22] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner,
Phys. Rev. B 92, 115127 (2015).

[23] X.-Y. Song, Y.-Z. You, and L. Balents, Phys. Rev. Lett. 117,
037209 (2016).

[24] G. B. Halász and J. T. Chalker, arXiv:1608.05762.
[25] Y.-Z. You, I. Kimchi, and A. Vishwanath, Phys. Rev. B 86,

085145 (2012).
[26] H. Gretarsson, J. P. Clancy, Y. Singh, P. Gegenwart, J. P.

Hill, J. Kim, M. H. Upton, A. H. Said, D. Casa, T. Gog, and
Y.-J. Kim, Phys. Rev. B 87, 220407(R) (2013); B. J. Kim
(private communication).

PRL 117, 127203 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

16 SEPTEMBER 2016

127203-6

http://dx.doi.org/10.1103/PhysRevLett.104.237203
http://dx.doi.org/10.1103/PhysRevLett.104.237203
http://dx.doi.org/10.1103/PhysRevB.84.115146
http://dx.doi.org/10.1103/PhysRevB.92.115127
http://dx.doi.org/10.1103/PhysRevLett.117.037209
http://dx.doi.org/10.1103/PhysRevLett.117.037209
http://arXiv.org/abs/1608.05762
http://dx.doi.org/10.1103/PhysRevB.86.085145
http://dx.doi.org/10.1103/PhysRevB.86.085145
http://dx.doi.org/10.1103/PhysRevB.87.220407

