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The in-plane resistivity anisotropy is studied in strain-detwinned single crystals of FeSe. In contrast to
other iron-based superconductors, FeSe does not develop long-range magnetic order below the tetragonal-
to-orthorhombic transition at Ts ≈ 90 K. This allows for the disentanglement of the contributions to the
resistivity anisotropy due to nematic and magnetic orders. Comparing direct transport and elastoresistivity
measurements, we extract the intrinsic resistivity anisotropy of strain-free samples. The anisotropy peaks
slightly below Ts and decreases to nearly zero on cooling down to the superconducting transition. This
behavior is consistent with a scenario in which the in-plane resistivity anisotropy is dominated by inelastic
scattering by anisotropic spin fluctuations.

DOI: 10.1103/PhysRevLett.117.127001

Electronic nematicity has emerged as a key concept in
iron-based superconductors since the observation of in-
plane resistivity anisotropy in stress-detwinned crystals of
Co-doped BaFe2As2 [1,2]. The fact that the resistivity
anisotropy is much larger than what is expected from the
small lattice distortion led to the proposal that the tetrago-
nal-to-orthorhombic transition in the iron pnictides is
driven not by phonons, but by an electronic nematic phase.
Subsequent experiments revealed an intricate dependence
of the resistivity anisotropy on doping (a sign change
between electron- and hole-doped materials [2–6]), and
disorder [7,8], sparking hot debates about its microscopic
origins (see Refs. [9,10] for reviews).
Electronic contributions involved in the in-plane

resistivity anisotropy [10] can be separated into the Drude
weight and/or the scattering rate anisotropies. Fermi-
surface anisotropies arising, for instance, from the ferro-
orbital order triggered at the nematic transition affect mostly
theDrudeweight [11–13]. Anisotropic scattering can be due
to elastic processes, such as the development of local
magnetic order around an impurity [14,15], or inelastic
processes, such as the scattering of electrons by anisotropic
magnetic fluctuations [16,17] known to exist above Ts [18].
Recent stress-dependent optical reflectivity studies in Co-
doped BaFe2As2 point to a dominant effect of the Drude
weight [19,20]. However, stripemagnetic order appearing at
the magnetic transition severely complicates the analysis.
This is because the magnetic state breaks translational
symmetry leading to an anisotropic reconstruction of the
Fermi surface [7,21] and to the appearance of “Dirac cones”
[22], which may dramatically alter the resistivity anisotropy
[23]. Disentangling these contributions is fundamental to
reveal the origin of the resistivity anisotropy and, conse-
quently, of the nematic state.

In this context, the stoichiometric FeSe [24] is an ideal
system. It is rather clean (residual resistivity ratios as high
as fifty [25]) and its tetragonal-to-orthorhombic phase
transition at Ts ≈ 90 K is not accompanied by long-range
magnetic order [26] eliminating effects of Fermi surface
folding.
In this Letter we report the resistivity anisotropy mea-

sured in strain-detwinned single crystals of FeSe. Upon
cooling, the anisotropy ΔρðTÞ≡ ρa − ρb (ρa and ρb are the
resistivities along the orthorhombic a and b directions)
initially increases, reaching a maximum at about 20 K
below Ts, and then nearly vanishes upon further cooling
towards the superconducting transition Tc ≈ 8.5 K. This
pronounced nonmonotonic behavior is consistent with the
scenario in which the main contributor to the resistivity
anisotropy is inelastic scattering by magnetic fluctuations
rather than the anisotropy of the elastic scattering or of the
Fermi surface. To support this conclusion, we performed
model calculations of resistivity anisotropy for the scatter-
ing of electrons by anisotropic magnetic fluctuations. We
find that the anisotropy is well described by the product of
two temperature-dependent functions, ΔρðTÞ¼ϒðTÞϕðTÞ.
The standard nematic order parameter ϕðTÞ increases upon
cooling and the scattering function ϒðTÞ decreases and
vanishes as the temperature approaches zero.
Single crystals of FeSe (∼1 mm2 surface area and 20 to

150 μm thick) were grown using chemical vapor transport
as in Ref. [27,28]. Polarized light optical imaging [1,29]
was used to characterize the orthorhombic domain pattern
appearing below Ts as shown in Fig. 1. In the orthorhombic
phase, the optical bireflectance is anisotropic, which
permits visualization of domains of different orientations.
Furthermore, the intensity of red, green, and blue (RGB)
color components are directly related to the reflected
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photon frequency for a given color perception system [30].
Since different domains reflect polarized light differently,
this allows extraction of the nematic order parameter. A
similar analysis method was introduced in Ref. [31]. The
intensity histograms of RGB channels in a clean area of the
sample [white box in Fig. 1(a)] at different temperatures are
shown in Figs. 1(b), 1(c), and 1(d). Above Ts the image is
of uniform color, manifesting as single peaks in the
histograms [panel (b)]. Below Ts the domains of different

colors lead to peak splitting in the histograms, most
pronounced in the red channel [Figs. 1(c), 1(d)]. The
temperature evolution of the red channel histogram is
shown in panel (e). The peak splitting ω, signaling the
breaking of tetragonal symmetry, was determined using a
fit to two Gaussians and its normalized value,
ϕimageðTÞ≡ ωðTÞ=ωT→0, is shown in Fig. 1(f). ϕimage
represents the optical reflectivity anisotropy and is a
measure of the nematic order parameter by symmetry.
Consistently, it agrees very well with the orthorhombic
lattice distortion δ ¼ ða − bÞ=ðaþ bÞ determined by high-
energy x-ray diffraction using measurements similar to
those of Refs. [1,31], and the temperature dependence of a
two-peak feature in energy dispersion curves observed by
angle-resolved photoemission spectroscopy (ARPES)
below TN [32], see Fig. 1(f).
Samples for mechanical detwinning were cut along the

tetragonal [110] direction, which becomes the orthorhom-
bic a or b axis on cooling, as shown schematically by the
green lines in Fig. 1(a). Tensile strain was applied to the
sample through 50 μm Ag wires also used as potential
leads; see inset in Fig. 2(a). Wires for current contacts
were mounted strain-free. All contacts were indium sol-
dered. Figure 2(a) shows the resistivity of the FeSe sample
measured in the strain-free twinned state ρt, and along the
(longer) a-axis in the detwinned state achieved by appli-
cation of tensile strain εa of two different magnitudes
ρaðε1Þ and ρaðε2Þ. εa ¼ ε1, ε2 is controlled by pulling apart
the arms of the horseshoe device. In the strain-free, twinned
state ρt shows only a small kink at Ts. The sample is split
into approximately equal areas of domains of two orienta-
tions, so its resistivity is ρt ¼ ðρa þ ρbÞ=2. Together with
the measurements in detwinned samples, this allows us to
extract the resistivity along the orthorhombic b axis ρb, and
the in-plane anisotropy Δρ, shown in Fig. 2(b) for the two
strain values. The anisotropy increases markedly on cool-
ing, evolves smoothly through Ts, and peaks below Ts. On
further cooling it decreases, reaching small values at Tc.
Note that Δρ > 0, i.e., the resistivity is larger along the a
direction, thus having the same sign as that of FeTe [33]
and hole-doped BaFe2As2 [4] and Ca1−xNaxFe2As2 [5]
compounds, and opposite to electron-doped and isovalently
substituted BaFe2As2 [1,2,34].
The application of strain not only promotes the for-

mation of orthorhombic domains of only one orientation
below Ts, but it also induces resistivity anisotropy above
and below Ts due to the elastoresistivity of the material.
Figure 3(a) shows the elastoresistivity coefficients 2m66

andm11 −m12 measured using a piezo-based setup, similar
to that described in Refs. [35,36]. Samples of approximate
dimensions 1 × 0.3 × 0.07 mm3 were glued to one side of a
piezostack, shown in the left inset in Fig. 3(a). The change
of sample resistance was measured as a function of
anisotropic strain, monitored in situ using crossed strain
gauges glued to the opposite side of the piezostack. The

FIG. 1. (a) Polarized light image of an FeSe single crystal at
7 K, revealing orthorhombic domains oriented along the tetrago-
nal [100] direction (parallel to the sample sides). For detwinning,
the sample is cut along the [110] tetragonal direction as indicated
by the green lines. Enlarged are the views of the area indicated by
the white box in (a) and corresponding RGB histograms taken at
(b) 92, (c) 80, and (d) 10 K. The change below Ts is most
pronounced in the red channel (b)–(d) and the temperature
evolution of its histograms is shown in panel (e). The peak
splitting ω was analyzed using a fit to two Gaussians [lines in (e)]
and the normalized nematic order parameter, ϕimage ¼
ωðTÞ=ωT→0, is shown in panel (f) and compared with the results
of angle-resolved photoemission spectroscopy (ARPES)
measurements [32] and the orthorhombic lattice distortion
δ ¼ ða − bÞ=ðaþ bÞ from our x-ray diffraction measurements.
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elastoresistivity coefficient 2m66 corresponds to the nor-
malized derivative of Δρ with respect to the orthorhombic
shear strain εa − εb, 2m66 ¼ 1=ρ½dΔρ=dðεa − εbÞ� [36]. It
clearly diverges on approaching Ts from above [Fig. 3(a)],
following almost perfectly a Curie-Weiss law, 2m66 ∼
1=ðT − T0Þ with T0 ≈ 83 K [right inset in Fig. 3(a)], in
qualitative agreement with a previous report [32]. A second
elastoresistivity mode, m11 −m12, is related to the deriva-
tive of the resistivity anisotropy between two diagonals of
the orthorhombic unit cell, ½110�o and ½11̄0�o, with respect
to the corresponding shear strain, m11 −m12 ¼
1=ρf½dðρ½110�o − ρ½11̄0�oÞ�=½dðε½110�o − ε½11̄0�oÞ�g [36]. This
mode does not couple to the nematic order parameter
and is, as expected, found to be almost zero above Ts.
In the strain-free samples, Δρ ¼ 0 is expected for

T > Ts and the observed finite resistivity anisotropy is

likely a consequence of the applied strain. We therefore
compare in Fig. 3(b) the resistivity anisotropy under
applied strain ε2, given in this case by Δρðε2Þ ¼
ε2ðdΔρ=dεaÞ, with the elastoresistivity data. Because
2m66 ¼ 1=ρ½dΔρ=dðεa − εbÞ�, we use the identity
½dðεa − εbÞ=dεa� ¼ 1þ νFeSe to transform between strain
derivatives. Here, νFeSe is the Poisson ratio of FeSe
calculated from ultrasound data [37]. Clearly, Δρðε2Þ
and 2m66ρtð1þ νFeSeÞ ¼ dΔρ=dεa behave similarly for
T > Ts, explaining the experimentally observed tail of
Δρ above Ts. The scaling yields ε2 ¼ 7.7 × 10−4 (∼40% of
the distortion in the orthorhombic phase) for the external
strain applied through the horseshoe device. Below Ts,
samples in the elastoresistivity setup are not fully det-
winned, so that the domains dominate the measured m66,
which prohibits such a comparison.
To determine the effect of strain on the resistivity below

Ts, in Fig. 2(b) we return to the resistivity curves in a fully
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FIG. 2. (a) Temperature-dependent resistivity of FeSe measured
in a free-standing state, ρt (black curve), and under two values of
uniaxial tensile strain, εa ¼ ε1, ε2, representing a fully detwinned
state, ρa (blue and purple curves). The resistivity along the
orthorhombic b direction was calculated as ρb ¼ 2ρt − ρa (green
curve). The insets show the whole temperature range and the
schematics of the horseshoe detwinning device. (b) Resistivity
anisotropy Δρ≡ ρa − ρb for the two values of strain, ε1 and ε2.
Their difference Δρðε1Þ − Δρðε2Þ is proportional to the strain-
derivative dΔρ=dεa (dashed orange line). The latter was used to
extract the intrinsic (strain-free) in-plane anisotropy of the
resistivity Δρðεa ¼ 0Þ ≈ Δρðε2Þ − ðdΔρ=dεaÞε2 in the ortho-
rhombic phase (red line).
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FIG. 3. (a) Elastoresistivity coefficients 2m66 and m11 −m12 of
FeSe measured using crossed samples glued to a piezostack,
shown schematically in the left inset. The right inset shows the
inverse of 2m66 − 2m66;0 demonstrating nearly perfect Curie-
Weiss–like behavior, 2m66 ¼ A=ðT − T0Þ þ 2m66;0 with
2m66;0 ¼ −2.6 and T0 ¼ 83 K. (b) Scaling of 2m66 ¼ 1=ρt½dΔρ=
dðεa − εbÞ� with the resistivity anisotropy Δρðε2Þ measured in
detwinned samples. Here, we assume that Δρðε2Þ is induced by
the applied strain above Ts, so that Δρðε2Þ ¼ ε2ðdΔρ=dεaÞ and
use the identity dðεa − εbÞ=dεa ¼ 1þ νFeSe to transform between
the two quantities. The inset shows the Poisson ratio of FeSe,
νFeSe, determined from the ultrasound data of Ref. [37] (solid
line), and extrapolated to 250 K and below Ts (dashed lines).

PRL 117, 127001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

16 SEPTEMBER 2016

127001-3



detwinned state obtained for two constant strains, ρaðε1Þ
and ρaðε2Þ. In the linear response regime, we can approxi-
mate dΔρ=dε1 ≈ ½Δρðε1Þ − Δρðε2Þ=ðε1 − ε2Þ�. The deriva-
tive is used to extract the intrinsic resistivity anisotropy
between the a and b directions of a single-domain sample
in the absence of external strain, Δρðε → 0Þ ≈ Δρðε2Þ−
ε2½Δρðε2Þ − Δρðε1Þ�=ðε2 − ε1Þ. The constant value of
ε2=ðε2 − ε1Þ ≈ 3.7 is fixed by enforcing Δρðε ¼ 0Þ ¼ 0
in the tetragonal state. The resulting Δρðε ¼ 0Þ [red line in
Fig. 2(b)] clearly displays a broad maximum 20 K
below Ts.
The previous comparison between m66 and Δρ reveals

that, above Ts, the resistivity anisotropy is proportional to
the strain, and, therefore, to the nematic order parameter ϕ.
A similar behavior was experimentally observed in the iron
pnictides [31]. This relationship indeed is more general:
because Δρ and ϕ break the same symmetry, they are
generally proportional to each other, i.e., Δρ ¼ ϒϕ, where
ϒ is the proportionality factor [35,38]. It is clear from Fig. 1
that ϕ displays a standard order-parameter behavior,
monotonically increasing upon cooling. In contrast, the
resistivity anisotropy Δρ shows a pronounced peak below
Ts and decreases to nearly zero at T → 0. This behavior
must therefore arise from the temperature dependence of
the proportionality factor ϒ that should also vanish as
T → 0, since ϕ remains finite and large at T → 0. Among
the possible microscopic contributions to Δρ affecting ϒ—
anisotropies of Fermi surface, elastic, and inelastic scatter-
ing rates, only the latter one naturally leads to the observed
behavior. Phenomenologically, this is nicely illustrated by
using ϕimage of Fig. 1 as a proxy of ϕ, and the resistivity of
the twinned sample ρtðTÞ as a proxy of ϒ. The latter relies
on the assumption that the inelastic scattering also domi-
nates the isotropic transport properties. Indeed, the product
ϕimageðTÞρtðTÞ, shown by the black symbols in Fig. 4,
captures much of the temperature dependence of ΔρðTÞ.
In order to develop a microscopic scenario for this

behavior, we consider the three-band model of Ref. [16],
in which electrons are scattered by magnetic fluctuations.
This model contains one circular hole pocket at the center
of the Brillouin zone, with dispersion εh;k ¼ ϵh − k2=2m,
and two electron pockets centered at momentaQ1 ¼ ðπ; 0Þ,
εe1;kþQ1

¼ −ϵe þ k2x=2mx þ k2y=2my, and Q2 ¼ ð0; πÞ,
εe2;kþQ2

¼ −ϵe þ k2x=2my þ k2y=2mx. Below Ts, the onset
of nematic order leads to stronger fluctuations at the
ordering vector Q1 than at Q2, a behavior observed
experimentally by neutron scattering [18]. Depending on
the relative positions khs of the hot spots—points of the
hole and electron pockets connected by the ordering
vectors, εh;khs

¼ εe1;khsþQ1
¼ 0—one finds ρa > ρb or ρb >

ρa (see also Ref. [17]). Indeed, the change in the positions
of the hot spots from hole doping to electron doping was
argued in Ref. [4] as a possible reason for the sign change
ofΔρ. Whether the hot spot positions in FeSe are consistent
with the observed ρa > ρb requires detailed ARPES

measurements above Ts. Using the formalism developed
in Ref. [16], we perform an expansion of the resistivity
anisotropy, finding Δρ ¼ ϒϕ. Here, we assume ϕðTÞ to
display a mean-field-like behavior ϕðTÞ ¼ ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − T=Ts

p

.
The proportionality constant ϒ, arising from the scattering
of electrons by magnetic excitations, depends on the
magnetic correlation length ξ and on the Landau damping
of the magnetic fluctuations Γ. In particular, we find
ϒ ¼ ϒ0Tð1þ 3Γξ−2=2πTÞ−1, where ϒ0 is a constant that
depends on the geometry of the Fermi surface and on the
residual resistivity. This leads to ϒðT → 0Þ ∼ T2 and,
therefore, the different temperature dependencies of
ϕðTÞ and ϒðTÞ give rise to a maximum in Δρ below
Ts. This behavior is illustrated in Fig. 4, where we plot the
calculated Δρ for ξ ¼ 3a and Γ ¼ 150 meV (the product
ϕ0ϒ0 is treated as a fitting parameter to the data). Note that
ξ was assumed to be small and temperature independent
above Ts, in agreement with NMR data [39,40]. Below Ts,
the onset of nematic order renormalizes ξ and leads to its
enhancement [41], as observed in the same NMR data. The
good agreement between the calculated and the measured
Δρ suggests that the inelastic scattering by anisotropic
magnetic fluctuations can explain the experimentally
observed nonmonotonic temperature-dependence of the
in-plane resistivity anisotropy.
In conclusion, the comparison of direct transport and

elastoresistivity measurements in FeSe was used to extract
the intrinsic in-plane resistivity anisotropy of strain-free
samples. A strong non-monotonic temperature dependence,
displaying a maximum below Ts and becoming very small
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as T → 0 was observed. This behavior is explained by
anisotropic inelastic scattering as a main contribution to
Δρ, shedding new light on the origin of nematicity in FeSe.
Since the superconducting state in this compound emerges
from a nematic-paramagnetic state, the observed connec-
tion between nematicity and inelastic magnetic fluctuations
provides an important ingredient for modeling the pairing
mechanism in FeSe.
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Note added in the proof—Recent ARPES experiments
[32,42] have challenged the identification of the ARPES
splitting reproduced in our Fig. 1(f) as the dxz=dyz orbital
splitting proposed by other groups [43,44]. While this issue
remains unsettled, its outcome does not affect the con-
clusions of our study.
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