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Phase transitions are commonly held to occur only in the thermodynamical limit of a large number of
system components. Here, we exemplify at the hand of the exactly solvable Jaynes-Cummings (JC) model
and its generalization to finite JC lattices that finite component systems of coupled spins and bosons may
exhibit quantum phase transitions (QPTs). For the JC model we find a continuous symmetry-breaking QPT,
a photonic condensate with a macroscopic occupation as the ground state, and a Goldstone mode as a low-
energy excitation. For the two site JC lattice we show analytically that it undergoes a Mott-insulator to
superfluid QPT. We identify as the underlying principle of the emergence of finite system QPTs the
combination of increasing atomic energy and increasing interaction strength between the atom and the
bosonic mode, which allows for the exploration of an increasingly large portion of the infinite dimensional
Hilbert space of the bosonic mode. This suggests that finite system phase transitions will be present in a
broad range of physical systems.
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Introduction.—Quantum phase transitions (QPTs) and
spontaneous symmetry breaking are fundamental concepts
in physics that lie at the heart of our understanding of
various aspects of nature, e.g., phases of matter such as
magnetism and superconductivity [1,2] or the generation of
mass [3,4] in high energy physics. A second-order QPT is
characterised by a closing spectral gap and degenerate
ground states with a spontaneously broken symmetry. A
QPT is typically held to occur only in the thermodynamical
limit, i.e., a system with a diverging number of constituent
particles or lattice sites [1]. A finite system size generally
opens the spectral gap, lifts the ground state degeneracy,
and restores the symmetry of the ground state [5,6].
A notable exception is a recent finding in Ref. [7]

concerning the Rabi model [8–12], which describes a
single-mode cavity field coupled to a two-level atom.
While the Dicke model, an N-atom generalization of the
Rabi model, has long been known for having a QPT for
N → ∞ [13,14], Ref. [7] demonstrates that the Rabi model
itself undergoes a QPT with the same universal properties
when the ratio η of the transition frequency to the cavity
frequency diverges [11,15,16], and that the finite-frequency
scaling exponents for η are identical to those forN [17,18]. It
is then urgent and important task to see if reaching a limit of
the QPT for a system of finite components is a principle that
is generally applicable to photonic (phononic) systems with
different underlying symmetries, phases, and dimensions. If
positively answered, it could open up an important pos-
sibility of experimentally investigating the critical phenom-
ena in a fully controlled quantum system [19].
In this Letter, we consider the Jaynes-Cummings (JC)

model [20], the Rabi model without the so-called counter-
rotating terms, which due to its Uð1Þ symmetry is exactly
solvable. We first point out that the well-known analytical

solution of the JCmodel exhibits a ground state instability in
the η → ∞ limit, beyond a critical coupling strength, in the
sense that the ground state can lower its energy indefinitely
by increasing its photon occupation. In this regime, we
derive the analytical solution for the ground state and the
excitation spectrum by developing a low-energy effective
theory. It shows that the JC model undergoes a second order
superradiant QPT. In the broken-symmetry phase, we find
that the ground state forms a photon condensate with a
macroscopic photon occupation number and that the exci-
tation spectrum is gapless because the Goldstone mode [21]
emerges. Note that, unlike in Ref. [22,23], the QPT
discussed here occurs in the absence of a driving field.
We develop this further by showing that the JC lattice

model with only two lattice sites, the JC dimer, undergoes a
Mott-insulating-superfluid QPT in the same η → ∞ limit.
While the JC lattice model can undergo a Mott-insulating-
superfluid QPT in the limit of infinite lattice sites [24–30],
here the QPT is supported by the infinite dimensional
Hilbert space associated with the harmonic oscillator
degree of freedom. Our exact analytical solution shows
that (i) the antisymmetric normal mode of the coupled
cavities undergoes a transition from an insulating phase to a
superfluid phase with a broken global Uð1Þ symmetry,
while the symmetric mode gets merely squeezed in the
superfluid phase, and (ii) the spectral gap of the antisym-
metric mode closes at the critical point, beyond which the
excitation is gapless, while the symmetric mode remains
gapped for any coupling strength. Our analysis is analytic
and fully quantum mechanical, going beyond the mean-
field approach that is often used in the studies of the JC
lattice model for lack of the exact methods [25,28].
Quantum phase transition in the JC model.—The

Jaynes-Cummings Hamiltonian reads
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HJC ¼ ω0a†aþ Ω
2
σz − λðaσþ þ a†σ−Þ: ð1Þ

Here, σ� ¼ ðσx � iσyÞ=2 with σx;y;z the Pauli matrices, and
a (a†) is the lowering (raising) operator of a cavity field.
The cavity frequency is ω0, the transition frequency is Ω,
and the coupling strength is λ. The conserved total number
of excitationsNtot¼a†aþσþσ− leads to aUð1Þ-continuous
symmetry. Let us denote jni as an n-photon Fock state and
j↑ð↓Þi as an eigenstate of σz with an eigenvalue 1ð−1Þ. We
introduce a dimensionless coupling strength g ¼ λ=

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
and a frequency ratio η ¼ Ω=ω0. Typically, the JC model
is obtained as an approximation to the Rabi model by
neglecting the counterrotating terms −λðaσ− þ a†σþÞ [7].
In systems where the atom-field interaction can be engi-
neered, such as in circuit QED [31] or trapped-ion systems
[32], such counterrotating terms can be strongly suppressed
and, remarkably, for an atomic Δm ¼ �1 transition in
interaction with a circularly polarized light mode the
rotating wave approximation is exact such that Eq. (1)
becomes a correct description for any g [33].
The vacuum state j0;↓i is an energy eigenstate of the JC

model with an eigenvalue E0;↓ ¼ −Ω=2. There are two
basis states with a total number of excitations n, jn;↓i and
jn − 1;↑i, which span the so-called JC doublet, denoted as
jn;�i, whose energy eigenvalues read

En;�ðω0;Ω;gÞ¼
�
n−

1

2

�
ω0�

Ω
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−η−1Þ2þ4g2nη−1

q
:

ð2Þ

Regardless of η, for g < 1 the ground state of Eq. (1) is
always j0;↓i, until at g ¼ 1 there occurs a level crossing
between j0;↓i and j1;−i. This is followed by a series of
level crossings between the lower-energy states of adjacent
JC doublets jn;−i and jnþ 1;−i [Fig. 1(a)]. Therefore,
increasing the atom-cavity coupling strength increases
hNtoti in the ground state, denoted as nG, in discrete steps
[Fig. 1(c)]; in this sense, the JC-type atom-cavity coupling
itself assumes the role of a chemical potential. Moreover, as
η increases, the increase of nG becomes progressively
sharper near g ¼ 1 [Fig. 1(c)].
We now consider a particular limit of η → ∞ and

λ=ω0 → ∞, while g is kept finite. We emphasize that the
oscillator frequency ω0, a unit of energy in our analysis, is
considered to be nonzero, as otherwise the spectrum would
be unbounded from below for any nonzero g. First, for
η ≫ 1, En;− can be expanded to give

En;−ðω0;Ω; gÞ ¼ nð1 − g2Þω0 þ g2nðg2n − 1Þη−1ω0

−
Ω
2
þOðη−2Þ: ð3Þ

Therefore, when η → ∞, λ=ω0 → ∞, and g is finite,
the nonlinearity in the spectrum of the JC model

disappears, leading to a harmonic spectrum, i.e.,
limη→∞½En;−ðη; gÞ − E0;↓� ¼ ω0ð1 − g2Þn, which is a valid
expression for any finite n. The excitation energy for g < 1,
a normal phase, is therefore ϵnp ¼ ω0ð1 − g2Þ, which
becomes zero at g ¼ 1, leading to a degeneracy between
jn;−i of any finite n and j0;↓i. For g > 1, Eq. (2) shows a
ground state instability (in the limit η → ∞) in the sense
that the ground state energy can be indefinitely lowered by
increasing n. It is insightful to consider the energy spectrum
given in Eq. (2) as an effective potential for n, Vη;g

eff ðnÞ≡
ðn−1

2
Þ−η

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−η−1Þ2þ4g2nη−1

p
, where n is approximated

to be a real number and η, g are constants. We find the
potential minimum at n¼0 for g<1 and for n>0 for g > 1
and any η [Fig. 1(b)]. For η ≫ 1, the potential minimum is
at nspðgÞ≡ nGðg > 1Þ ¼ ηðg2 − g−2Þ=4þOðη0Þ, which
explains very well the quadratic behavior of nG shown
in Fig. 1(c). Furthermore, in the η → ∞ limit and g > 1, it
is immediately obvious nG diverges; that is, a ground state
superradiance occurs.
The instability of the JC model for g > 1 in the η → ∞

limit predicted from Eq. (2) and the infinite value of nsp
suggests the derivation of a low-energy effective
Hamiltonian for the superradiant phase g > 1 that is valid
around the potential minimum. To this end, we displace the
cavity field a in Eq. (1) by a complex number α ¼ αgeiθ

with αg ¼ ffiffiffiffiffiffinsp
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðg2 − g−2Þ=4

p
, i.e., H̄JCðαg; θÞ ¼

D†½α�HJCD½α�, where D½α� ¼ eαa
†−α�a. By factoring out

the phase e−iθNtotH̄JCðαg; θÞeiθNtot , we have H̄JCðαgÞ ¼
ω0ða†aþ α2gÞ − ðω0

ffiffiffi
η

p
=2gÞðxτx − g2pτyÞ þ ðg2Ω=2Þτz þ

ω0αgxðτ0 þ τzÞ. Here, we introduce the new spin operators

τz¼j↑̄ih↑̄j−j↓̄ih↓̄j¼g−2σz−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−g−4

p
σx, τx¼j↑̄ih↓̄jþj↓̄i

h↑̄j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−g−4

p
σzþg−2σx, and τy¼−iðj↑̄ih↓̄j−j↓̄ih↑̄jÞ¼σy,

(a) (b)

(c)

FIG. 1. Analytic solution of the JC model. (a) Level crossings
for the ground state for a frequency ratio η ¼ 10. (b) An effective
potential Vη;g

eff for g¼0.8 (dashed) and g ¼ 1.2 (solid) for different
values of η ¼ 10 and 100. (c) The total number of excitation of
the ground state. As η increases, the change near g ¼ 1 becomes
progressively sharper, which is well described by nspðgÞ ¼
ηðg2 − g−2Þ=4 (solid).
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as well as x¼ aþa† and p¼ iða†−aÞ. Note that H̄JCðαgÞ
no longer possesses the Uð1Þ symmetry, and the analytical
solution is not available in general. Then, we apply a
unitary transformation UJC¼exp½ði=2g ffiffiffi

η
p Þðg−2xτyþpτxÞ�

to H̄JCðαgÞ so that a transformed Hamiltonian

U†
JCH̄JCðαgÞUJC is free of coupling terms between spin

subspaces H↓̄ and H↑̄. Finally, a projection onto H↓̄, that

is, h↓̄jU†H̄JCðαgÞUj↓̄i, leads to the low-energy effective
Hamiltonian of the JC model in the superradiant phase,

H̄sp
JC ¼ ω0

4
ð1 − g−4Þx2 þ Esp

G ðgÞ: ð4Þ

Here, the ground state energy Esp
G ðgÞ ¼ −Ωðg2 þ g−2Þ=4,

leading to a discontinuity in the second derivative of EG at
g ¼ 1, locating a second order QPT. The energy scale for
the low-energy excitation, ðω0=4Þð1 − g−4Þ, is finite for any
g > 1, while the ground state energy in unit ofω0, which is an
extensive quantity in η, diverges, as in the normal phase.
Interestingly, the effective Hamiltonian is quadratic only

in the xquadrature,while thep quadrature does not appear in
the Hamiltonian [34]. The ground state of H̄sp

JC is an
eigenstate of thexquadrature,which is an infinitely squeezed
vacuum, whose major axis is the p quadrature, i.e., jr →
∞i ¼ limr→∞S½r�j0i with S½r� ¼ exp½−ðr=2Þða†2 − a2Þ�.
Going back to the original basis, the ground state is
jΨsp

G ðθÞi ¼ eiθa
†aD½αg�S½r → ∞�j0i for θ ∈ ½0; 2π�. Since

any choices of the phase θ of α lead to an identical spectrum,
the ground states are infinitely degenerate. The ground state
for the superradiant phase is therefore an infinitely squeezed
photon condensate, whose renormalized photon occupation
number is nG=η ¼ ðg2 − g−2Þ=4. Moreover, the Uð1Þ sym-
metry is spontaneously broken, as is evident from a nonzero
spontaneous coherence hai=η≡ hΨsp

G ðθÞjajΨsp
G ðθÞi=η ¼

eiθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 − g−2Þ=4

p
, which is an order parameter of the

QPT [Fig. 2].
We note that the critical behaviors described here, the

diverging ground state energy, squeezing, and spontaneous
coherence, arise only in the limit of η → ∞ as the QPT. For

any finite η, the ground state has a finite energy with a finite
number hNtoti for any g; moreover, by the symmetry, the
coherence hai and the squeezing of the ground state is
always zero. This is exactly analogous with the fact that a
model that undergoes a QPT in the N → ∞ limit restores
analytical behaviors for any finite values of N [1,5,6].
Because Eq. (4) is quadratic in only one quadrature

without the conjugate variable appearing in the
Hamiltonian, the excitation spectrum is gapless [Fig. 2].
This gapless excitation is a well known consequence of the
spontaneous breaking of continuous Uð1Þ symmetry and is
often called a Goldstone mode [21]. The effective photon
number potential shown in Fig. 1(b) or the mean-field
energy of the JC model [35] assumes the form of the
Mexican-hat potential in a phase space of the cavity field a;
therefore, the appearance of the Goldstone mode can be
intuitively understood from the fact that the excitation
along the circle of the potential minima does not cost any
energy. Finally, the vanishing spectral gap near the critical
point gives rise to a critical exponent, ϵðgÞ ∝ jg − 1jα with
α ¼ 1, which differs from α ¼ 1

2
of the Rabi model [7].

We have shown so far that the JC model, one of the most
fundamental in quantum optics, exhibits a second-order
QPT. Our analysis clearly demonstrates that the atom-
cavity coupling controls the ground state photon numbers,
and that a large η leads to a divergence in the ground state
photon number. We note that η plays precisely the same
role in the JC model as the number of atoms in the Tavis-
Cummings model [36], an N-atom generalization of the JC
model, which undergoes the same kind of QPT [31].
Therefore, the fact that arbitrarily many photons can be
created through interaction with another quantum system,
regardless of its size, is the origin of the QPTs in a photonic
(phononic) system with finite components; this is in
contrast to systems with hard-core bosons or spins, which
require infinitely many components to achieve a QPT.
Mott-insulator to superfluid transition in a finite JC

lattice model.—We now consider a photonic lattice model
with a finite lattice size. We demonstrate that this model is
capable of exhibiting Mott-superfluid type phase transi-
tions away from the conventional thermodynamic limit of
infinite lattice sites. Specifically, we consider the JC lattice
model [24–27], which describes a one-dimensional lattice
of coupled cavities each containing a two-level atom to
realize the JC model, which reads HJCL ¼ P

N
i¼1 HJC;i þP

N−1
i¼1 Jðaia†iþ1 þ H:c:Þ, where i indicates ith cavity and

HJC;i ¼ω0a
†
i aiþðΩ=2Þσiz−λðaiσiþþa†i σi−Þ. The model

has a global Uð1Þ symmetry due to the conserved total
excitation number Ntot ¼

P
iða†i ai þ σiþσi−Þ. In the N →

∞ limit, it is in general not amenable to exact solutions,
neither analytically nor numerically; therefore, its phase
diagram, showing the Mott-insulating-superfluid transition,
is often studied based on the mean-field solution [25,28].
For finite N, the numerically exact calculation shows a
crossover from a Mott insulating phase to a superfluidlike

FIG. 2. QPT of the JC model. The excitation energy ϵðgÞ (left,
blue solid) and the ground state coherence hai=η of the cavity
field (right, red dashed) in the η → ∞ limit. For g > 1, the Uð1Þ
symmetry of the JC model is broken, leading to a Goldstone
mode and a nonzero coherence.
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phase, due to the finite-size effect, which generally prevents
the system undergoing a true QPT [26].
We now choose N ¼ 2, thus called a JC dimer, which is

the smallest possible number of sites for a lattice system,
and show that it undergoes a second-order Mott-insulating-
superfluid QPT, in the η → ∞ limit. Note that, unlike some
of the previous works [25,28], we introduce neither a
chemical potential term to fix the number of polaritons nor
counterrotating terms, which has been shown to stabilize
the chemical potential in Ref. [37]; rather, as witnessed
in the previous section, a strong JC-type interaction
between the field and the atom itself modulates the number
of polaritons of each cavity. The JC dimer Hamiltonian can
be written in terms of normal modes b1ð2Þ ¼ ða1 ∓ a2Þ=

ffiffiffi
2

p

and s1þð2þÞ ¼ ðσ1þ ∓ σ2þÞ=
ffiffiffi
2

p
, that is,

HJD ¼
X2
i¼1

�
½ω0þð−1ÞiJ�b†i biþ

Ω
2
σiz−λðbisiþþb†i si−Þ

�
;

ð5Þ

where we assume J=ω0 < 1. In the following we treat the
two cases g < gc and g > gc, which lead to different phases,
separately. To treat the g < gc case, we first apply a unitary
transformation to HJD, which decouples the normal modes
from the atom, UJD ¼ exp½ðg= ffiffiffi

η
p ÞPi¼1;2ðbisiþ − b†i si−Þ�,

followed by a projection onto the subspace of j↓i1j↓i2 [35].
The resulting Hamiltonian is

HMott
JD ¼ ω0

X2
i¼1

�
1 − g2 þ ð−1Þi J

ω0

�
b†i bi −ΩþO

�
η−

1
2

�
;

ð6Þ

which becomes exact in the η → ∞ limit. Note that there is a
phase boundary gcðJÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J=ω0

p
[Fig. 3(a)], on which

the spectral gap of the b1 mode vanishes as ϵ ∝ ½g − gcðJÞ�μ
with μ ¼ 1 and beyond which the b1 mode becomes
unstable. As a consequence, Eq. (6) is the valid effective
Hamiltonian only for g < gcðJÞ. In this phase, the ground
state in the original cavity field basis is j0;↓i1j0;↓i2. This
corresponds to an n ¼ 0Mott-insulating phase, where each
cavity assumes the fixed, same number of excitations. The
b2 mode remains stable for g < gcðJÞ.
As in the JC model, the fact that the b1 mode becomes

unstable for g > gcðJÞ suggests that it gets occupied by a
macroscopic number of photons. Therefore, it is insightful to
look at the mean-field energy of HJD, which we find as
EMF
JD ðη;g;J=ω0;βÞ=Ω¼g2cðJÞη−1jβj2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2g2η−1jβj2

p
[35].

EMF
JD assumes the form of the Mexican-hat potential for

g > gcðJÞ, where the potential minimum occurs at β1¼
eθ1 jβ1j with jβ1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η=½2g2cðJÞ�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½g=gcðJÞ�2− ½g=gcðJÞ�−2

p
.

The mean-field solution predicts a spontaneously
broken-symmetry phase and an appearance of the

Goldstone mode. The second derivative of the ground state
energy in g become discontinuous at g ¼ gcðJÞ, indicating
that it is a second order QPT [35].
For g > gcðJÞ, we first displace the b1 mode by its mean-

field amplitude β1, which leads to a new atomic state for the
ground state, and then apply a unitary transformation
decoupling the normal modes and atoms, followed by a
projection onto the low-energy subspace [35]. The resulting
effective Hamiltonian reads

H̄SF
JD ¼ ω0g2c

4

�
1 −

g4c
g4

�
x21 þ

J
2
p2
2 þ

ω0

4

�
1þ J

ω0

−
g6c
g4

�
x22

ð7Þ

up to the constant ground state energy and gc here
denotes gcðJÞ.
The two normalmodes are decoupled from each other, and

the above Hamiltonian is exactly solvable. First, the p1

quadrature of the b1 mode disappears from the effective
Hamiltonian, as in Eq. (4). Therefore, it immediately follows
that the global Uð1Þ symmetry of the JC lattice model is
broken for g > gcðJÞ. The nonzero coherence of each cavity
field haii ≠ 0 marks the onset of the superfluid phase and
becomes an order parameter. The excitation spectrum of the
b1 mode is gapless (Goldstone mode) in the broken sym-
metry phase [Fig. 3(b)]. The Hamiltonian for the b2 mode in
Eq. (7) leads to a harmonic spectrum with an excitation
frequency of ϵSF2 ðgÞ ¼ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1þ ω0=J(1 − g6cðJÞ=g4)�

p
. As

shown in Fig. 3(b), the b2 mode remains gapped for both
phases. Interestingly, the first derivative of ϵSF2 ðgÞ is discon-
tinuous at g ¼ gcðJÞ. Such a slope discontinuity of the b2
mode can be potentially used to detect the presence of the
Goldstone mode as suggested in Ref. [31]. The ground
state of the b2 mode is a squeezed vacuum, whose
squeezing parameter is given by ξ ¼ −1=4 lnf1

2
½1þ ω0=

J(1 − g6cðJÞ=g4)�g, which is zero at g ¼ gc and gradually
increases. The JC dimer may also serve as the testing ground
for the physics of phase interfaces in lattice systems [38].

(a) (b)

FIG. 3. JC lattice model. (a) Phase diagram in the ðg; JÞ plane.
(b) Excitation energy of the antisymmetric (b1) and symmetric
(b2) normal mode as a function of g for J=ω0 ¼ 0.1. At the
critical point, where the b1 mode becomes the Goldstone mode,
the first derivative of the excitation energy of the b2 mode
becomes discontinuous.
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Conclusion.—Unlike massive particles, photons can be
created by their interaction with an atom, as the chemical
potential of the photon vanishes [39]. We have shown that
for an atom with a much larger characteristic frequency
than the photon but strongly coupled to it, it is possible to
have a macroscopic photon occupation in the ground state.
This, as we have demonstrated at the hand of the JC
models, leads to the emergence of a QPT in a system
composed of finitely many components, photonic modes,
and atoms. We note that the required parameter regime can
be realized in a trapped ion setup [19,40] where the critical
scaling relation due to the finite-system QPT can be
observed using the adiabatic preparation of the ground
state [19]. Our finding here, together with one presented in
Ref. [7], opens up an important possibility to study the
critical phenomena of light and sound, such as QPT,
universality, and the dynamics of the QPT, in fully
controlled quantum systems including superconducting
circuits and trapped ions.
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