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One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a
nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through
violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values
of the scale factor such that the entire evolution remains classical. A common claim has been that a
nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this
Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a
procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering
any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the
NEC violating phase. We also discuss the relation between our procedure and earlier work.
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Introduction.—Demonstrating that classical bounces are
possible is an important milestone in constructing theories
of the origin and evolution of the Universe that avoid
a big bang and its attendant singularity problem, or the
invocation of large quantum gravity effects. The challenge
has been to find examples that avoid instabilities or other
pathologies so that it is possible to smoothly transit from a
bounce to a homogeneous, isotropic and flat expanding
universe that matches observations.
The necessary conditions for a bounce can be understood

by following the evolution of the Hubble parameter
H ≡ _a=a assuming Einstein gravity and a spatially flat
Friedmann-Robertson-Walker (FRW) universe with metric
ds2 ¼ −dt2 þ a2ðtÞdxidxi (where the dot denotes differ-
entiation with respect to FRW time t): During a period of
ordinary (not de Sitter or anti–de Sitter) contraction, H is
becoming more negative as the scale factor aðtÞ is shrink-
ing, and the total energy density ∝ H2 is growing. During
an ordinary expanding period, on the other hand, H is
becoming less positive as aðtÞ is expanding, and the total
energy density ∝ H2 is shrinking. These two cosmological
phases can only be connected classically if, towards the end
of the ordinary contracting phase, H reverses its evolution
and starts becoming less negative at a finite value of a, well
before H2 gets close to Planckian energies. During this
“bounce stage,” the increasing value of H eventually hits
zero and continues to grow until it reaches a large positive
value (well below the Planck scale but above the nucleo-
synthesis scale), at which point the bounce stage ends and
H begins to decrease. In a flat FRW universe, a growing
Hubble parameter ( _H > 0), as occurs during the bounce
stage, corresponds to violating the null energy condition
(NEC). Hence, we see the NEC violation is essential.
To achieve NEC violation, various forms of stress energy

have been considered [1]. One of the best motivated

examples is a scalar field described by a cubic Galileon
action. An ordinary, canonical scalar field with quadratic
kinetic term does not violate the NEC at all. A pure ghost
field with a wrong sign quadratic kinetic term violates
the NEC but is inherently quantum unstable. If a right-sign
quartic kinetic term, ∼ð∂ϕÞ4, is added, as occurs in so-
called PðXÞ theories [where X ¼ −ð1=2Þð∂ϕÞ2], the ghost
instability can be avoided; in this case, though, when
curvature fluctuations of the metric are considered, there
always remain gradient instabilities [2]. The cubic Galileon
action, which corresponds to adding a term proportional to
∼□ϕð∂ϕÞ2, is the simplest example of a scalar field that
enables NEC violation while avoiding both types of
instability [3]. In addition, Galilean invariance of the action
(exact or approximate) suppresses radiative corrections [4].
Galileons have several other physics applications as well,
including massive gravity and attempts to explain late-time
acceleration [5].
Although linear perturbation theory suggests that, for

some constructions, cubic Galileon theories can avoid
pathologies during a period of NEC violation, it has been
unclear until now whether this is possible when the NEC
violating period includes a nonsingular bounce. In fact, the
recent arguments suggest that either the speed of sound of
comoving curvature modes becomes imaginary (i.e., ghost
or gradient instability) for some wavelengths during the
NEC violating phase [6,7], or the evolution must reach a
singularity [8].
In this Letter, we demonstrate that a classically stable

nonsingular bounce is possible. As an example, we study
generalized cubic Galileon theories and employ an “inverse
method” for explicitly constructing classically stable non-
singular bounces. After briefly reviewing the background
evolution during the bounce stage, we derive the second-
order Galileon action in comoving gauge and formulate
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the linear stability criteria for gauge-invariant curvature

perturbations. We then describe how to produce examples
that have no ghost or gradient instability and maintain a
subluminal sound speed throughout the NEC violating
phase. Those more interested in the existence of stable
bouncing solutions than in the method for obtaining them
may wish to jump ahead to Figs. 1 and 2 to see an explicit
example. Finally, we discuss the relation between our
results and earlier work.
Background evolution during the bounce stage.—We

assume that the bounce stage is driven by a single scalar
field ϕ that is described by the generalized cubic Galileon
action S ¼ R

d4x
ffiffiffiffiffiffi−gp

L with the defining Lagrangian
density

L ¼ 1

2
M2

PlR −
1

2
kðϕÞð∂ϕÞ2 þ 1

4
M−4

Pl qðϕÞð∂ϕÞ4

þ 1

2
M−3

Pl bðϕÞð∂ϕÞ2□ϕ − VðϕÞ: ð1Þ

Here,MPl is the reduced Planck mass, R is the Ricci scalar,
g is the metric determinant, kðϕÞ is the dimensionless
quadratic coupling and qðϕÞ is the dimensionless quartic
coupling, bðϕÞ is the dimensionless coupling of the scalar

field ϕ to the cubic Galileon term, and VðϕÞ is the scalar
potential. Other energy components, such as radiation,
matter, dark energy, or other scalars that drive different
stages of cosmic evolution are subdominant and, hence,
negligible during the bounce stage (though they play an
important role after the bounce stage, as we will describe in
the Discussion section).
Varying the action with respect to the metric gμν, we find

the corresponding Friedmann equations for a spatially flat
geometry,

3H2 ¼ ρ ¼ 1

2
k _ϕ2 þ 1

4
ð3q − 2b0Þ _ϕ4 þ 3Hb _ϕ3 þ V; ð2Þ

−2 _H ¼ ρþ p ¼ k _ϕ2 þ ðq − b0Þ _ϕ4 þ 3Hb _ϕ3 − bϕ̈ _ϕ2;

ð3Þ
where prime denotes differentiation with respect to the
scalar field ϕ. Throughout, we work in reduced Planck
units (MPl ≡ 1). The first Friedmann equation describes
the different contributions to the total energy density ρ
while the second Friedmann equation describes the sum
of energy density and pressure p of the scalar field ϕ. The
ratio − _H=H2 is equal to the equation-of-state parameter
ϵ≡ ð3=2Þðρþ pÞ=ρ.
Variation of the action with respect to ϕ yields the FRW

scalar field equation

�
kþ ð3q − 2b0Þ _ϕ2 þ 6Hb _ϕþ 3

2
b2 _ϕ4

�
ϕ̈

¼ −
1

2
k0 _ϕ2 −

1

4
ð3q0 − 2b00Þ _ϕ4 −

3

4
bðq _ϕ4 þ 4VÞ _ϕ2

−
�
kþ q _ϕ2 þ 3

2
b2 _ϕ4

�
3H _ϕ − V 0: ð4Þ

FIG. 1. A plot of the sound speed c2S (solid blue curve) for
comoving curvature perturbations as a function of time t. The
time coordinate is given in Planck units and the value of c2S is
given in units where the speed of light is unity. Superimposed for
illustration purposes are the shapes of the background solutions
for HðtÞ (dashed green curve; also shown in Figs. 2 and 3)
and _HðtÞ (dotted red curve). More specifically, the results
correspond to HðtÞ¼H0te−Fðt−t

�Þ2 and γðtÞ¼ γ0e3ΘtþHðtÞ with
the parameter values H0 ¼ 3 × 10−5, t� ¼ 0.5, F ¼ 9 × 10−5,
γ0 ¼ −0.0044, Θ ¼ 0.0046. Notably, throughout, the sound
speed is real [AðtÞ, BðtÞ>0] and subluminal, with 0 < c2S < 1.
The characteristic energy scale ∼H2 is well below the Planck
scale, and the NEC violating phase lasts ∼150 Planck times; it
starts when _H becomes positive at tbeg ≃ −74M−1

Pl and ends when
_H becomes negative at tend ≃ 75M−1

Pl ; the bounce [HðtÞ ¼ 0]
occurs at t ¼ 0. Note that the bounce stage occurs well within the
classical regime.

FIG. 2. A plot of the dimensionless couplings k (solid blue
curve), q (dotted orange curve), and b (dot-dashed red line) as a
function of ϕ for the example given in Fig. 1. The x axis has
Planck units and the y axis has dimensionless units. As indicated
by the labeling, we have rescaled the quadratic and quartic
couplings for the purpose of illustration.
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The Universe enters the bounce stage when the Galileon
field’s kinetic energy becomes the dominant energy com-
ponent and the sum of pressure and energy density turns
negative (NEC violation). Since ρ ≥ 0 throughout, the
bounce stage is characterized by negative pressure −p> ρ
and a super-stiff equation of state ϵ < 0 both commonly
associated with potential ghost or gradient instabilities.
To understand why NEC violating theories are potentially
unstable and under which conditions instabilities can be
avoided, we next derive the stability criteria for Galileon
theories. [The criteria were obtained previously in Ref. [9],
but we rederive them here to emphasize some pedagogical
points, especially the importance of the lapse equation of
motion and the origin of γðtÞ in the analysis that follows.]
Stability criteria from linear perturbation theory.—On a

homogeneous FRW background with ρ ≥ 0, any leading-
order instability comes from the kinetic or gradient terms of
the linear theory. Hence, to properly identify the stability
behavior, we will study first-order perturbations around the
smooth background given by Eqs. (2)–(4).
To perform the stability analysis, it proves useful to

employ the ADM formalism and decompose the metric as

ds2 ¼ −ðN2 − NiNiÞdt2 þ 2Nidxidtþ gijdxidxj; ð5Þ

where N is the lapse, Ni is the shift, and gij is the spatial
metric. For the homogeneous FRW background, N̄ ¼ 1,
N̄i ¼ 0, and ḡij ¼ a2ðtÞδij (bar denotes background quan-
tities). We introduce linear perturbations to N, and Ni using
the standard parametrization

δN ¼ N − N̄ ¼ α; δNi ¼ Ni − N̄i ¼ ∂iβ: ð6Þ

For scalar perturbations of the spatial metric, we have the
freedom to choose a particular slicing of space-time, i.e., fix
the gauge. We choose to work in the comoving gauge,
where space-time is sliced such that spatial inhomogene-
ities are all promoted to the metric and the scalar field does
not carry any perturbations,

δϕ ¼ 0; gij ¼ a2ðtÞ½1þ 2ζðt;xÞ�δij: ð7Þ

This gauge has the advantage that the comoving curvature
perturbation ζ is gauge invariant and, hence, ensures that
our conclusions about stability do not entail gauge artifacts.
In addition, the lack of scalar-field perturbations signifi-
cantly simplifies the calculation in the presence of higher-
order kinetic terms.
In the comoving gauge, the second-order action takes the

form

Sð2Þζ ¼ 1

2

Z
d4xa3Lð2Þ

ζ ; ð8Þ

with the Lagrangian density

Lð2Þ
ζ ¼ α2ð−6H2 þ k _ϕ2 þ ð3q − 2b0Þ _ϕ4 þ 12Hb _ϕ3Þ

þ 4α

�
3

�
H −

1

2
b _ϕ3

�
_ζ −

Δζ
a2

�
− 6_ζ2 þ 2

�∇ζ

a

�
2

þ 4
Δβ
a2

�
_ζ −

�
H −

1

2
b _ϕ3

�
α

�
− 6ð6H − b _ϕ3Þζ _ζ

− 9

�
3H2 −

1

2
k _ϕ2 −

3q − 2b0

12
_ϕ4 −Hb _ϕ3 þ V

�
ζ2;

ð9Þ

where we introduced the spatial gradient ∇ ¼ ∂i and
Δ ¼ ∇2 ¼ ∂i∂i. Using the background equations (2) and
(3) and integrating by parts, the last two terms cancel.
Varying the action with respect to the shift, we find the
equation of motion for the lapse,

�
H −

1

2
b _ϕ3

�
α ¼ _ζ: ð10Þ

The coefficient of α plays a subtle but important role in the
analysis that follows. Note that H − ð1=2Þb _ϕ3 ¼ 0 renders
_ζ ¼ 0. In particular, no singular behavior appears at
this point. For our stability analysis, we will consider
solutions in which H − ð1=2Þb _ϕ3 ≠ 0 throughout, and, as
we comment below, stability forbidsH − ð1=2Þb _ϕ3 passing
continuously through zero.
For H − ð1=2Þb _ϕ3 ≠ 0, variation of the second-order

action with respect to the lapse α and substituting the
expression for the shift Δβ=a2 together with the expression
for α fromEq. (10) back into the original action in Eq. (8) and
doing a series of integrations by parts yields the second-order
action for comoving curvature perturbations ζ,

Sð2Þζ ¼
Z

d4xa3ðtÞ
�
AðtÞ_ζ2 − BðtÞ

a2ðtÞ ð∇ζÞ
2
�
; ð11Þ

with the dimensionless coefficients

AðtÞ ¼ k _ϕ2 þ ð3q − 2b0Þ _ϕ4 þ 6Hb _ϕ3 þ 3
2
b2 _ϕ6

2ðH − 1
2
b _ϕ3Þ2 ; ð12Þ

BðtÞ ¼ k _ϕ2 þ q _ϕ4 þ 2bϕ̈ _ϕ2 þ 4Hb _ϕ3 − 1
2
b2 _ϕ6

2ðH − 1
2
b _ϕ3Þ2 : ð13Þ

The conditions for stable NEC-violation correspond to
positivity of AðtÞ (no-ghost condition), and positivity of
BðtÞ (no gradient instability). Obviously, in the absence
of ghost, the square of the sound speed c2S ¼ BðtÞ=AðtÞ > 0

if BðtÞ > 0. To achieve subluminal evolution for comoving
curvature modes, we have to additionally demand that
c2S < 1.
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Inverse method.—Using the background equations (2)–
(3), it is straightforward to check that Eq. (13) can be recast
to the simple form

d
dt

γðtÞ−1 þHðtÞγðtÞ−1 ¼ BðtÞ þ 1; ð14Þ

where γðtÞ ¼ HðtÞ − ð1=2ÞbðϕÞ _ϕ3ðtÞ and γ is defined
to carry the same dimension as H (½γ� ¼ ½H� ¼ MPl).
Equation (14) is a linear first-order differential equation
for γ−1ðtÞ with the unique solution

γðtÞ ¼ NðtÞ
γ−10 þ R

t
t0
ðBðtÞ þ 1ÞNðtÞdt ; γðt0Þ ¼ γ0; ð15Þ

where the auxiliary function NðtÞ is defined as

NðtÞ ¼ exp

�Z
t

t0

HðtÞdt
�

¼ aðtÞ
aðt0Þ

: ð16Þ

In addition, we can reexpress AðtÞ in Eq. (12) as a function
of H and γ,

AðtÞ ¼ 3þ 6H2 − 4V þ 2 _H þ _γ þ 3Hγ

γ2
: ð17Þ

These relations have many uses. For example, for any
choice of HðtÞ and BðtÞ we can immediately determine the
corresponding γðtÞ and AðtÞ, or, equivalently, for any
choice of background solutions HðtÞ and ϕðtÞ, we can
immediately determine the corresponding AðtÞ and BðtÞ
and, hence, infer the stability behavior for comoving
curvature modes. This feature allows us to rapidly search
through forms for HðtÞ and ϕðtÞ that describe bounces
and identify choices for which both A; B > 0 and the sound
speed for comoving curvature modes is subluminal, as
shown in Fig. 1.
It is then straightforward to identify the corresponding

couplings in the cubic Galileon Lagrangian, Eq. (1), using
the background equations (2)–(3):

kðtÞ ¼ −2ð3H2 − 2V þ 2 _H þ _γ þ 3HγÞ= _ϕ2ðtÞ; ð18Þ

qðtÞ ¼ 4

3
ð2 _H þ _γ þ 9Hγ − 3VÞ= _ϕ4ðtÞ þ 2

3
b0: ð19Þ

In the examples discussed in the remainder of this Letter,
we assume for simplicity that VðϕÞ is negligible. As
we will discuss in the following section, if γ is finite and
nonzero throughout, we have the freedom to set the
Galileon coupling b≡ 1. Finally, inverting ϕðtÞ ¼ ϕ0 þR
t
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðH − γÞ3

p
dt and substituting tðϕÞ into Eqs. (18)–(19),

we find the expressions for the couplings as a function of ϕ.
The three coupling functions corresponding to our example
in Fig. 1 are depicted in Fig. 2. Note that both kðϕÞ and
qðϕÞ have simple forms. These can be well approximated

by simple functions of ϕ: we have checked that one can
start with these approximate coupling functions and the
initial conditions ϕ0 ¼ ϕðt0Þ, _ϕ0 ¼ _ϕðt0Þ to find the back-
ground solutions describing a classically stable bounce
stage with subluminal sound speed for comoving curvature
modes. In sum, we have demonstrated that it is possible for
the Universe to have a classically stable, NEC violating
bounce stage without a singularity or any bad behavior.
Special case: γ → −∞.—If there is no gradient insta-

bility [BðtÞ > 0], the strict positivity of the function NðtÞ
defined in Eq. (16) implies that the integral in the
denominator of the expression for γðtÞ in Eq. (15) is
positive definite and increasing monotonically for all
t > t0. Hence, for any γ0 < 0, there will be some t̄ > t0
such that the denominator reaches zero and γ → −∞. A
Taylor series of the denominator about t̄ results in a leading
linear contribution: ½ðBðt̄Þ þ 1Þ�Nðt̄Þðt − t̄Þ. Hence, we see
that γ must approach −∞ as t → t̄ from t < t̄ and þ∞ as
t → t̄ from t > t̄. In the previous section, we have shown
that γ can be chosen such that it is negative and finite
throughout the bounce stage, which means that, formally, t̄
would be reached after the NEC is restored, by which time
other contributions to the stress energy (such as matter and
radiation) that could be ignored during the bounce stage
may dominate and the formal calculation of t̄ has no actual
physical relevance.
However, in Fig. 3, we intentionally chose as an

academic exercise an example in which t̄ occurs during
the NEC-violating bounce stage and show that, even if the
derived quantity γ diverges during the bounce stage, all

FIG. 3. A plot of the sound speed c2S (solid blue curve) for
comoving curvature modes as a function of time t during the
bounce stage corresponding to the background given by HðtÞ ¼
H0te−Fðt−t

�Þ2 (dashed green curve; rescaled to show shape)
and γðtÞ ¼ γ0e3Θt þHðtÞ (dotted red curve) for the parameter
values H0 ¼ 3 × 10−5, t� ¼ 0.5, F ¼ 7 × 10−5, γ0 ¼ −0.0044,
and Θ ¼ 4.6 × 10−6. After the bounce and shortly before the
end of NEC violation, γðtÞ goes from −∞ to þ∞ while all
fundamental physical quantities including HðtÞ and c2S remain
finite and positive.
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fundamental, physical quantities can remain well-defined
and finite throughout the bounce stage. For this to happen
while keeping Hðt̄Þ, _ϕðt̄Þ, and ϕðt̄Þ finite, it is necessary
that the coupling kðϕÞ, qðϕÞ, and bðϕÞ diverge at t → t̄.
Remarkably, the sound speed c2S remains continuous and
positive and below 1 despite the diverging coupling.
It is also possible to construct exampleswith γ0 > 0 andno

gradient instability [BðtÞ > 0] throughout the entire bounce
stage. In this case, the denominator in Eq. (15) remains
positive definite and monotonically increasing; so the only
option is that γðtÞmonotonically approaches zero fromabove
as t increases, analogous to the examples in Figs. 1 and 2,
where γ is negative and approaches zero as t decreases.
Discussion.—In this Letter we presented an inverse

method that makes it possible to achieve a long-standing
goal: to construct field theories with a classically stable,
NEC-violating bounce stage that avoids ghost and gradient
instabilities, maintains a real, subluminal sound speed for
comoving curvature modes, and does not encounter a
singularity.
Our results build on earlier studies on NEC violation

and bounces. In Refs. [10,11], it was argued that cubic
Galileons can smoothly pass throughH ¼ 0 but encountered
gradient instabilities before exiting the NEC-violating stage.
In Ref. [12], the authors considered Galilean genesis scenar-
ios withNEC violation, and showed that Galilean scalar field
perturbations are stable during the early stages when H is
small and gravity is negligible, but this study did not include
an exit from the NEC-violating stage when H becomes
large and the scalar field can create curvature perturbations
with ghost and gradient instabilities. Indeed, gradient insta-
bilities were encountered during the NEC-violating stage in
Refs. [6,7,13,14] when the authors attempted to construct
nonsingular bouncing models, leaving the impression that
linear instabilities are unavoidable. However, this Letter
definitively shows these instabilities can be safely avoided.
Most recently, a no-go theorem claiming that singular-

ities are unavoidable in NEC-violating Galileon theories
was presented in Ref. [8] and further generalized in
Ref. [15]. Their argument is equivalent to the statement
that γðtÞ in Eq. (15) must have a zero-point crossing or
diverge for some value of t̄ for the Galileon Lagrangian in
Eq. (1). It is important to note, though, that the conclusion
only depends on the cubic Galileon form of the action. The
zero-point crossing or divergence occurs whether or not
there is NEC violation or a bounce, so long as the action is
described by Eq. (1). In particular, when there is a bounce,
the theorem says nothing about whether t̄ occurs during,
before or after the bounce. We have demonstrated, in fact,
that t̄ does not have to occur during the NEC-violating
bounce stage. As a practical matter, that may suffice
for constructing fully stable nonsingular bouncing cosmol-
ogies since, before and after the bounce stage, it is expected

that other forms of energy are non-negligible and even
dominant, so that the Lagrangian in Eq. (1) is no longer
applicable. Although one can easily envisage how to
construct examples in which the Galileon decays into or
is overtaken by a NEC satisfying component before or after
the bounce, as considered in Refs. [8,15,16], a reliable
calculation of stability requires an expanded gauge-
invariant treatment compared to these earlier analyses.
We will present the analysis and examples in forthcoming
work [17]. Also, as we will show in Ref. [18], simply
extending the Galileon action to include the next-order
interaction suffices to obtain nonsingular cosmological
bouncing solutions that are fully stable for all finite times.
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