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We show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy
depositions, can probe dark matter down to the ∼keV warm dark matter mass limit. This mass reach is
3 orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy
resolution. For dark matter lighter than ∼100 keV, the kinematics of the process requires the two athermal
excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence
mechanism for controlling backgrounds.
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Introduction.—The endeavor to detect and probe dark
matter (DM) directly has seen promising strides in recent
years, and yet the DM particle remains elusive. Existing
nuclear recoil experiments have tightly constrained DM
above mX ∼ 10 GeV [1–3], a mass scale that is well
motivated by the weakly interacting massive particle
(WIMP) paradigm. WIMPs gained prominence both
because of the coincidence of the relic abundance of DM
with freeze-out at theweak scale, as well as their connection
to the hierarchy problem. In recent years, however, broad
classes of well-motivated DM models have emerged with
DM candidates having mX < 10 GeV [4–14]. In response,
new ways of detecting DM via nuclear [15] and electron
recoils have been proposed [16–18], and a limit (though still
relatively weak) has been set for mX ≳ 10 MeV [19].
There are two main obstacles to detecting DM down to

mass scales as light as thewarmDM limit (corresponding to
mX ∼ 1 keV [20–22]). The first is that the initial kinetic
energy available for scattering, Ei ¼ 1

2
mXv2X, becomes as

small as 1meVfor keV-massDM,with thevelocity set by the
local velocity dispersion of the Milky Way, vX ∼ 10−3. The
1 meV scale is well below the energy resolution of current
experiments, though substantial technological advances are
underway. Second, as the DM mass drops below the target
mass, momentum conservation enforces that a decreasing
fraction of the DM kinetic energy can be transferred to the
nucleus or electron in an elastic collision—the maximum
momentum transfer is qmax ¼ 2mXvX, corresponding to an
energy transfer of 2mXv2XðmX=mTÞ, wheremT is themass of
the target electron or nucleus. Thus, as the DM mass
decreases, one gets decreasing returns in energy deposition;
for instance, keV-massDMcandeposit atmost∼10−9 eVon
a light nuclear target like helium.
One way to bypass these challenges for DM lighter than

1 MeV is to use the target velocity, as was proposed for the
detection of keV-mass DM using meV energy depositions
on electrons in superconducting aluminum [23,24]. Here,
we develop an alternative idea for detecting super light dark
matter via nuclear interactions. By coupling nuclear DM

scattering to multiple excitations in superfluid helium, we
can experimentally probe the whole range of kinematically
available DM energy and momentum.
Detection with superfluid helium.—To understand

why multiple excitations are necessary for probing
mX ∼ keV −MeV, first consider a single-phonon process.
In superfluid helium, phonons with momentum k≲ 1 keV
(corresponding to wave number k ∼ 1 Å−1 but in units
where ℏ ¼ c ¼ 1) have a linear dispersion relation
ω ¼ csk, where the sound speed is cs ∼ 10−6. Since
cs ≪ vX, a single on-shell phonon (a phonon obeying
the dispersion relation) is unable to absorb anOð1Þ fraction
of the DM kinetic energy while still conserving momen-
tum. The situation changes dramatically when multiexci-
tation processes are considered. Two on-shell quasiparticles
with nearly equal and opposite momentum can absorb all
the DM kinetic energy while still conserving momentum.
There is a phase space suppression for this configuration,
but we will show that for light DM, the constraints from a
helium experiment with a kg yr of exposure will comple-
ment superconducting aluminum targets.
As with superconductors, excitations in superfluids do

not easily thermalize, making energy deposits detectable
above thermal noise. We expect that high energy excita-
tions will decay to lower energy (athermal) phonon and
roton modes, initiating a shower along the direction of
propagation of the initial excitations. In addition, the pair of
excitations retains information about the direction of the
initial momentum transfer in the DM scattering, though the
size of this effect (and corresponding ability to reconstruct
the initial direction of the DM motion) will be suppressed
by the small ratio of the momentum transfer to the
momentum of the final state excitations.
Once the energy is deposited in the fluid, it can be

measured with transition edge sensors (TESs) or micro-
wave kinetic inductance devices (MKIDs) having the
requisite ∼meV energy resolution to access the kinetic
energy of DM down to mX ∼ 1 keV. It has been previously
argued [23,24] that such an energy resolution could be
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achieved by shrinking the size and further cooling devices
similar to those that have already been designed. Such
sensors could equally well be attached to a superconducting
aluminum target or to liquid helium, making the develop-
ment of such sensors highly parallel between the two
classes of experiments. We leave a detailed examination of
the experimental design for a multiexcitation liquid helium
detector to future work [25].
Excitations in superfluid helium.—We begin by using

quantum fluid dynamics to parametrize second-quantized
density and velocity excitations,

ρ ¼ ρ0 þ V−1
2

X
k

eið~k·~r−ωktÞρ~k; ð1Þ

~v ¼ V−1
2

X
k

eið~k·~r−ωktÞ~v~k; ð2Þ

where V is a reference volume and ρ0 is the mean
background density. Free perturbations satisfy the continu-
ity equation ~v~k ¼ −~kωkρ~k=ρ0k

2 and the corresponding
harmonic oscillator Hamiltonian in Fourier space,

H0 ¼
1

2

X
k

ðρ0v~kv−~k þ ϕkρ~kρ−~kÞ; ð3Þ

where ϕk is the second functional derivative of
the energy density with respect to the background density.
The force constant ϕk is related to the frequency by ω2

k ¼
ρ0k2ϕk and the frequency of perturbations is given by
ωk ¼ k2=2mHeSðkÞ. Here SðkÞ is the static structure factor
in units of the mean number density, related to the two-
point correlation function of perturbations in the liquid,
m2

HeSðkÞ ¼ hρkρ−ki. This function scales linearly for k≲
1 keV giving a linear dispersion relation, and levels off
to 1 at high k≳ 5 keV, giving the typical free-particle
dispersion relation [26].
From the commutation relation between the density and

velocity [27], writing ρ and ~v in terms of the usual creation
and annihilation operators, we find

ρ~k ¼ mHe

ffiffiffiffiffiffiffiffiffi
SðkÞ

p
ða~k − a†

−~k
Þ; ð4Þ

~v~k ¼ −
~k

2mHe

ffiffiffiffiffiffiffiffiffi
SðkÞp ða~k þ a†

−~k
Þ: ð5Þ

Then, expanding the Hamiltonian to the next (third) order
in perturbations, we find, similar to Refs. [28,29],

H3 ¼
Z

d3r

�
1

2
~v · ρ~vþ 1

3!

δϕk½ρ0�
δρ0

ρ3
�
: ð6Þ

At small k, ϕk½ρ0� ¼ c2s=ρ0, implying δϕk½ρ0�=δρ0 ¼
c2sð2u0 − 1Þ=ρ20, where u0 ≡ ðρ0=csÞðδcs=δρ0Þ ¼ 2.84, as
measured by Ref. [30]. Beyond this regime, the inclusion
of the ρ3 term varies between different treatments in the
literature and we therefore will drop it for the remainder of
this work. We note that this may cause the computed rate to

be different byOð1Þ factors and will address self-consistent
inclusion of the ρ3 term in future work [31].
This simple picture of quantum fluid perturbations is

substantially complicated by the fact that superfluid helium
is an interacting Bose fluid. Excitations with a wavelength
much larger than the interatomic spacing involves many
atoms, implying that a correct description of scattering at
low momentum transfer ðq≲ 1 ÅÞ must include inter-
atomic correlations. Feynman and Cohen [32] introduced
a correction to the ground state wave function, “backflow,”
which accounts for the positions of the other atoms. The
method of correlated basis functions (CBF) [33] is another
natural extension of the theory that systematically allows
one to compute the response of the fluid to one or more
excitations. Here we will denote one and two excitation

states by j~ki ¼ ρ†~k
j0i and j~k1~k2i ¼ ρ†~k1

ρ†~k2
j0i, respectively.

Because of interactions in the fluid, these states are not

orthogonal, h~k1~k2j~k1 þ ~k2i ≠ 0, and they must be ortho-
normalized. The orthonormalized two-excitation state
(denoted with a rounded bracket) is (see, for example,
the discussion in Refs. [34,35])

j~k1~k2Þ ¼
ρ~k1ρ~k2 −

h~k1þ~k2j~k1~k2i
h~qj~qi ρ~k1þ~k2

h~k1~k2j~k1~k2i1=2
j0i: ð7Þ

One can then compute the matrix element to create two
excitations:

ð~k1~k2jH3j~qÞ ¼ −
1

2mHe½SðqÞSðk1ÞSðk2Þ�1=2
× ½~q · ~k1Uðk1Þ þ ~q · ~k2Uðk2Þ
þ q2Uðk1ÞUðk2Þ�; ð8Þ

whereUðqÞ ¼ SðqÞ − 1 and where we emphasize again that
we are only including the kinetic term in the Hamiltonian
[34,36]. Results with similar energy andmomentum scalings
are obtained from the method of collective coordinates [37],
as well as in the dielectric formulation [38]. We refer the
reader to Ref. [35] for a review of these results, and leave a
more detailed discussion for future work [31].
Multiexcitation scattering rates.—We now turn to cal-

culating the rate of the interaction shown in Fig. 1. DMwith
initial momentum ~pi interacts with a helium nucleus
initially at rest, transferring momentum ~q and energy ω
to the nucleus. In an ordinary nuclear recoil, the maximum
momentum transfer is qmax ¼ 2mXvX, and a typical energy
deposition on the target nucleus ω≃ 10−9 eVðmX=keVÞ2.
As suggested above and depicted in Fig. 1, more energy

can be deposited via nuclear targets when energy and
momentum ðω; ~qÞ are deposited on a mediating off-shell
excitation. This excitation can come back on shell when the
interaction characterized by the Hamiltonian in Eq. (8)
leads to a splitting into two excitations carrying momentum
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~k1 and ~k2. When ω ≫ csqmax, these excitations must be
nearly back to back in order to conserve momentum. This
configuration has suppressed phase space, but we will show
that the rate for this process is nonzero. This is also
confirmed by the observation of a response in superfluid
helium away from the single-excitation dispersion curve
(see, e.g., Ref. [39] for recent measurements).
For the practical purpose of predicting DM exclusion

constraints that could be achieved with a superfluid helium
experiment, wewill use the dynamic structure factorSðq;ωÞ,
defined in relation to the differential scattering rate as

d2Γ
dqdω

¼ ρ0σNq
2mXmHepi

Sðq;ωÞ: ð9Þ

Though we will adopt Sðq;ωÞ from a recent state-of-the-art
numerical simulation [40], the remainder of this section will
be devoted to deriving the approximate form of Sðq;ωÞ in
order to analytically understand its behavior in the relevant
kinematic regimes.
In order to approximate the multiexcitation scattering

rate, we first apply Fermi’s golden rule,

Γ ¼ 1

ð2πÞ5
Z

d3pfd3k1d3k2
jhMij2

16m2
Xm

2
He

δð3Þð~q − ~k1 − ~k2Þ

× δ(ω −
1

2mHe

�
k21

Sðk1Þ
þ k22
Sðk2Þ

�
); ð10Þ

where the transition rate, following Ref. [41], is
Wfi ¼ jhMij2=16m2

Xm
2
He. To compute the matrix element

jhMij2, we need the relevant vertices (labeled V3 and VXN
in Fig. 1) and Green’s function for the off-shell intermedi-
ate state.
We can read off the appropriate matrix element from

the Hamiltonian via Wfi ¼ jVXNGðq;ωÞV3j2. Here V3 ≡
ð~k1~k2jH3j~qÞ in Eq. (8) and VXN ¼ 2πaρðrÞ=ðmXmHeÞ in
position space, where a is the scattering length (related
to the total cross section by σN ¼ 4πa2). Meanwhile, in
momentum space, VXN ¼ 2πa

ffiffiffiffiffiffiffiffiffi
SðqÞp

=mX. We will con-
sider both massive and light mediators such that in
momentum space, σN ¼16παpαX½fpZþfnðA−ZÞ�2m2

X=
ðq2þm2

ϕÞ2, where Z is the atomic number, A is the atomic
mass, and mϕ is the mediator mass. The couplings αX;p ¼
g2X;p=4π and fp;n are between the mediator and the DM,

proton, and neutron, respectively. The Green’s function for
momentum transfer in the fluid has the form Gðq;ωÞ ¼
ðωþmHec2s þ q2=2mHeÞ=½ω2 − c2sq2 − ðq2=2mHeÞ2� [42];
we will proceed under the approximation that ω ≫
mHec2s so that the behavior can be approximated as
GðωÞ ∼ 1=ω.
The rate in Eq. (10) can be evaluated for a generic helium

dispersion relation and for generic configurations. Here we
quote the result in the case that the final state excitations

are emitted in a back-to-back configuration, ~k1 ≈ −~k2 ≡ ~k,
which is necessary when q ≪ k. This approximation will
be good for low-mass DM but will break down by ∼1 MeV
for energy deposits below 10 meV. In order to obtain
analytic expressions, we take an approximation for SðkÞ
employed in Ref. [35]: SðkÞ ¼ k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

Hec
2
s þ k2

p
. While

this approximation misses important features such as the
roton peak, it does reproduce the correct behavior of SðkÞ
as k → 0 and when k ≫ 1 Å.
Under these assumptions, the analytic expressions

simplify to

Γ ¼
Z

d3k1d3pf

8ð2πÞ3
σNq4hðkÞ2GðωÞ2

m2
Hem

2
X

δðω − ω1 − ω2Þ; ð11Þ

where hðkÞ ¼
h
4m2

Hec
2
sð1− c2θÞþ k2− k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ 4m2

Hec
2
s

p i
=

ðk2þ 4m2
Hec

2
sÞ, where cθ is the angle between k1

and q, and where ω1 ¼ k21=½2mHeSðk1Þ� and ω2 ¼ k22=
½2mHeSðjq − k2jÞ�. In order to evaluate this further, we
note that the cθ integral can be carried out utilizing the δ
function, while the k1 integration can be done analytically
in the limit that ω ≫ mHec2s . We find that

Sðq;ωÞ ¼ 7m5=2
He

60π2ρ0

c4sq4

ω7=2 ; ð12Þ

which is in agreement with the q → 0, ω → ∞ limit of
Sðq;ωÞ quoted in the literature (e.g., Refs. [34,35,38,43]).
Note that we use the full expression derived from Eq. (11)
in computing rates from the analytic expression; Eq. (12)
should be considered only a guide to obtain a correct
order-of-magnitude estimate at higher DM mass. Note that
due to the steep scaling of Sðq;ωÞ with ω, the rate will be
peaked near the threshold of the detectors, with the rate
above ∼10 meV energy depositions being negligible.
We will consider two regimes in determining the

DM-nucleus cross section: for a heavy mediator we set
σN ¼ σp½fpZ þ fnðA − ZÞ�2=f2p, while for a light mediator
we set σN ¼ σp½fpZ þ fnðA − ZÞ�2q4ref=f2pq4, where q is in
units of a reference momentum at which σp is evaluated,
qref ¼ v0mX. In the nonrelativistic limit, the final state
phase space for the DM is rewritten as d3pf≈
dωdq2πqmX=pi. The integral over the momentum transfer
is from pi − pf to pi þ pf, where in terms of the initial DM
energy Ei ¼ 1

2
mXv2X, the momenta are pi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mXEi

p
and

FIG. 1. The two-excitation process we consider and the
corresponding kinematics. The dashed lines denote excitations,
while solid lines denote dark matter.
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pf ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mXðEi − ωÞp

. We thus obtain for the differential
rate, from Eq. (12),

dΓ
dω

≃ 7

120π2
σp½fpZ þ fnðA − ZÞ�2c4sm3=2

He

piω
7=2 aðEi;ωÞ; ð13Þ

where

aðEi;ωÞmϕ≫q ¼
32

6
m2

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EiðEi − ωÞ

p
ð4Ei − ωÞð4Ei − 3ωÞ;

aðEi;ωÞmϕ≪q ¼ 4q4ref
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EiðEi − ωÞ

p
: ð14Þ

Detection rates and sensitivity forecasts.—The scattering
rate for individual DM particles producing back-to-back
excitations can now be converted to a DM detection rate R
per target mass via

ω
dR
dω

¼
Z

dvXfMBðvXÞω
dΓ
dω

ρX
ρ0mX

; ð15Þ

where ρX is the local DM density 0.3 GeV=cm3, ρ0 is the
density of liquid helium, and fMB is the Maxwell-
Boltzmann distribution of DM in the Milky Way halo,

fMBðvXÞ ¼
4πv2Xe

−v2X=v
2
0Θðvesc − vXÞ

½erfðzÞ − 2ze−z
2

=
ffiffiffi
π

p �π3=2v30
; ð16Þ

with z ¼ vesc=v0 and where Θ denotes the Heaviside step
function. Here we take the root-mean-square velocity v0 to
be 220 km=s and the escape velocity vesc to be 500 km=s
[44]. For both massive and light mediators, the rate is
peaked at low ω.
Integrating over deposited energies, in Fig. 2 we show

the expected sensitivity of a 1 kg yr exposure of superfluid
helium to a two-excitation process, assuming a minimum

energy sensitivity of 1 meV, and a dynamic range of the
sensor up to 10 meV. We compute the rate utilizing the
analytic formula, Eq. (11) (dashed), as well as tabulated
from Ref. [40] (solid). The two are in good agreement,
except at masses approaching an MeV, where the tabulated
Sðq;ωÞ also includes a contribution from single phonon
emission. We also show the expected constraints from
ordinary nuclear recoils in the fluid with the same energy
resolution. When showing our results, we constrain σp in
the case where fp ¼ fn. The solar neutrino background is
small on helium (see Fig. 3 of Ref. [24]), so that the
95% confidence level from a one-sided Poisson distribution
corresponds to 3 events. Other sources of noise can be
controlled by the requirement that there be two back-to-
back excitations in the final state, though we note that this
will be less effective at higher DM masses. As can be seen
from the plot, two-excitation processes and nuclear recoils
provide highly complementary modes of DM detection,
with sensitivity in distinct regions of parameter space. With
1 meV energy resolution TESs, we can therefore employ a
single multimodal liquid helium experiment to constrain
dark matter masses over 5 orders of magnitude.
We also show scattering cross sections corresponding to

fixed αX, αp for a given mediator mass. These fixed
couplings are chosen to broadly satisfy terrestrial, cosmo-
logical and astrophysical constraints. The constraints
applied are described in general terms for DM-electron
interactions in Ref. [23], and are outlined in great detail in
Ref. [24]. Existing constraints on DM-nucleon interactions
are similar for models of interest here (or in some cases
weaker, for instance constraints from big bang nucleosyn-
thesis are weaker in models with DM coupling only to
nucleons), so we simply make use of these parameters to
emphasize that dark matter models satisfying all terrestrial,
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FIG. 2. 95% confidence level sensitivity expected with a 1 kg-year exposure of superfluid helium. We show both two-excitation
processes in the superfluid (labeled 2X) as well as ordinary nuclear recoils (labeled NR), with 1 meVenergy resolution in the detectors.
The results are computed analytically via the formula Eq. (11) (dashed), as well as tabulated from Ref. [40] (solid); we have stopped
these curves once the scattering begins to probe kinematic regions beyond that tabulated in Ref. [40]. Also shown are benchmarks based
on couplings that are consistent with current limits. For the massive mediator, we assume αX ¼ 10−5 for all three curves, while for the
light mediator we set αX ¼ 10−19.
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astrophysical, and cosmological constraints are within
reach of the class of experiments we propose. The impli-
cations of a superfluid helium experiment for various DM
models will be explored in future work [31].
Conclusions.—We have proposed a new method of

detecting DM using the quantum fluid dynamics of super-
fluid helium. With a kg yr exposure, we have demonstrated
that a superfluid helium experiment would complement
recently proposed superconductor experiments in detecting
low-mass DM scattering on nucleons instead of electrons.
Superfluid helium has additional benefits: (i) the kinemat-
ics of the two-excitation process provide a coincidence gate
for controlling backgrounds for DM lighter than ∼1 MeV,
and (ii) the same experiment can also search for DM via
nuclear recoils off helium nuclei, extending the range of
DM masses that can be probed. With the benchmarks
outlined in this Letter, we anticipate that the ability to probe
DM as light as the ∼keV warm DM limit will motivate
further development of the required technologies for
making these ideas experimentally viable. In a separate
publication, a specific design will be proposed [25].
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