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We measured the power spectrum and two-point correlation function for the randomly fluctuating free
surface on the downstream side of a stationary flow with a maximum Froude number Fmax ≈ 0.85 reached
above a localized obstacle. On such a flow the scattering of incident long wavelength modes is analogous to
that responsible for black hole radiation (the Hawking effect). Our measurements of the noise show a clear
correlation between pairs of modes of opposite energies. We also measure the scattering coefficients by
applying the same analysis of correlations to waves produced by a wave maker.
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The Hawking effect in laboratory analogues of event
horizons [1] has been well studied theoretically [2,3] and
experiments have been performed in different systems
[4–6]. Analogue horizons are created when waves propa-
gate in a stationary counterflowing medium: at points
where the flow speed reaches that of the wave, the latter
is blocked and converted to other branches of the dispersion
relation. At low frequency, this gives rise to a mode
amplification (an over-reflection [7]) which involves a
negative-energy wave [4,8–10], and which is at the root
of the Hawking effect [11]. Importantly, the scattered
waves of opposite energy are correlated with each other
[12]. As a result, when dealing with a noisy system, the
two-point correlation function of the fluctuating quantity
displays specific patterns both in space-time and in Fourier
space [13–18]. We here consider surface waves on a
stationary countercurrent of water in a linear tank. Our
work is inspired by the theoretical Refs. [9,19–21] and
builds on the experiments reported in Refs. [4,6,22,23]. As
in these experiments, the flow velocity near the blocking
point decreases along the direction of the flow. This means
that we work with an analogue white hole (the time
reversed of a black hole).
Ignoring the surface tension, and assuming that the flow

is incompressible and irrotational, the dispersion relation
which relates the angular frequency ω and the wave vector
k is

ðω − UkÞ2 ¼ gk tanhðkhÞ; ð1Þ

where U is the flow velocity, h the water depth, and
g the gravitational acceleration, see the Supplemental
Material [24] for some explanation about this relation,
and its associated wave equation. In a flow to the right, i.e.,
U > 0, for a fixedω, see the dotted horizontal line in Fig. 1,
the three roots kI , kB, and kH describe counterpropagating

waves, i.e., waves with a group velocity oriented to the left
in the co-moving frame at rest with the fluid [3,4,9]. Instead
kR describes a copropagating modewhich shall play no role
in the sequel. There are also transverse modes, which have
an effective mass [28] proportional to their transverse wave
vector k⊥.
In stationary inhomogeneous flows, such as that of

Fig. 2, ω is conserved. For fixed ω > 0, the roots kI and
kB merge at a point in the tank where U becomes
sufficiently large [21]. This merging describes an incident
long-wavelength mode I coming from the right, that is
blueshifted into a B mode with opposite group velocity
dω=dk in the laboratory frame (the slope of the curves in
Fig. 1): the well-known wave blocking [9,29]. We empha-
size here that the wave number kB of the scattered mode is
much larger than kI characterizing the incident wave. This
large blueshifting is the typical signature of analogue white
hole flows [10,30]. Importantly, for sufficiently low ω, the
wave blocking is accompanied by a nonadiabatic effect
producing an additional mode which also has a large wave
vector: kH. This mode has a negative frequency ω −Uk as
measured in the fluid frame, see Fig. 1, and thus carries a
negative-energy [4,8–10]. Because the total wave energy is
conserved, this conversion implies an amplification of the
B mode. This is in strict analogy with the Hawking effect.
However, it is difficult experimentally to have a flow that
will block waves at all frequencies and in experiments to
date [4,6,23] only waves above a critical frequency ωmin
were (essentially) blocked, see the Supplemental Material
[24]. Above ωmin, as we shall see, the main effect is the
conversion of incident I modes into B and H. This effect
was reported in Ref. [6] both below and above ωmin.
This conversion can be stimulated by an incident wave I

generated by a wave maker, as was done in Refs. [4,6]. In
contrast, the quantum Hawking effect, of fundamental
interest for black holes [11], arises from the amplification
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of vacuum fluctuations and gives rise to pairs of entangled
quanta with opposite energy [12]. Surface waves in the
water tank are not suitable to observe the quantum
Hawking effect. But just as the quantum vacuum provides
the horizon with an irreducible input, there is a stationary
background noise of surface waves in the inhomogeneous
flow created by both the turbulent flow and the underwater
obstacle, see Fig. 1 lower panel. Because of the mode
conversion near the blocking point, this noise should
be correlated. When measured in the downstream
homogeneous region, see Fig. 2, these correlations are

nonvanishing when the ka’s are evaluated at the same
value of ω [14,15,17], see Fig. 3 and the Supplemental
Material [24].
Our experiments were performed in the water channel of

the Pprime Institute (for more details, see Supplemental
Material [24]). The obstacle used to obtain an inhomo-
geneous flow was designed following the procedure out-
lined in appendix A of Ref. [21]. It relies on the hodograph
transformation for a 2D inviscid, irrotational, incompress-
ible flow [31]. The shape of the obstacle is determined by the
profile of the free surface, the asymptotic water depth, and
flow velocity, see Fig. 2. Themain advantage of this obstacle
over the one used in Refs. [6,23] is that it supports a flow
with a relatively large Froude number: 0.86� 0.03 in the
present experiment instead of 0.67� 0.02 see Sect. III D in
Ref. [23]. In addition, it produces a smaller static surface
deformation, or undulation [10,32], with a peak-to-peak
amplitude of a few millimeters (see Supplemental Material
[24]). The descending slope of the obstacle also has a larger
maximum gradient: the slope of c − U, giving the analogue
surface gravity in transcritical flows [21], has a maximum of
2 Hz instead of 1.2 Hz as used in Ref. [6] (here c ¼ ffiffiffiffiffi

gh
p

is
the velocity of long-wavelength waves in the fluid frame).
We measured the fluctuations of the water height

δhðx; tÞ, defined as the deviation from the time-averaged
value of hðx; tÞ, in the downstream constant-flow region
shown in Fig. 2. We first studied the noise power (which is
proportional to the wave action [33]) defined by

Pðω; kÞ≡ hjδ ~hðω; kÞj2i × S−2k : ð2Þ
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FIG. 2. Plots of the obstacle (orange line) and the observed free
surface (red line, see also the Figure S3 in the Supplemental
Material [24]) in meters. The two dashed vertical lines indicate
the region used to study the fluctuations of the free surface δh.
The blue, thick arrow shows the direction of the flow. Thin arrows
show the orientation of the group velocity (measured in the
laboratory frame) of the various modes produced by the scattering
of the incident I mode. The letters I, B, H, R have the same
meaning as in Fig. 1. The T arrow represents the transmitted wave
in the upstream side. The blue curve gives the free surface chosen
for determining the obstacle, see text for explanation.
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FIG. 1. Top: Dispersion relation in the homogeneous flow on
the downstream side of the obstacle. k is in m−1 and the angular
frequency ω in Hz. The effective parameters [see text below
Eq. (2) for definition] are Ueff ¼ 0.37 m · s−1 and heff ¼ 88 mm.
The blue continuous (dashed) lines correspond to Eq. (1) with
positive (negative) ω − Uk. The four dots labeled by B, I, R, H
give the roots ka for a fixed ω > 0 indicated by a dotted
horizontal line. Purple, dot-dashed lines describe transverse
modes with an even number of nodes in the transverse direction
(those with an odd number are not detected by our experimental
setup). The inset shows the same dispersion relation for
h ¼ 59 mm, i.e., beyond the turning point for the frequency
materialized by the dashed line. Bottom: Square root of the noise
power Pðω; kÞ divided by its maximum value and measured on
the downstream side of the obstacle, see Fig. 2 and Eq. (2).
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Here, δ ~hðω; kÞ is the Fourier transform of δhðt; xÞ and Sk ¼
jgk tanhðkhÞj1=4 is the structure factor relating plane waves
to unit-norm modes when working at fixed k [10,21]. The
Fourier transform in time is computed using a rectangular
window, while we used a Hamming window function [34]
with support x ∈ ½0.45 m; 1.45 m� to compute the spatial
transform (see Supplemental Material [24]). The mean
value is computed by dividing the data into 80 pieces of
equal duration (12.5 s) and averaging over them. In former
studies of the noise [22,35], this averaging was not
performed. As a result the plots showed random values
of jδ ~hðω; kÞj2 as opposed to its mean. The square root of
Pðω; kÞ is shown in the lower panel of Fig. 1. The typical
amplitude of jδhðx; tÞj in the observation window is a few
tenths of millimeters.
Although the upstream water height and flow velocity

were hup ¼ 74 mm and Uup ¼ 0.31 m · s−1, the dispersion
relation of Fig. 1 has been drawn with the effective values
heff ¼ 88 mm and Ueff ¼ 0.37 m · s−1, chosen to match
the observed wave numbers. The agreement of the
dispersion relation with the three counterpropagating
modes I, B, and H is clear for all values of ω. We expect
that the differences with hup and Uup are due to boundary
layer, vorticity, and turbulent effects. When using heff and
Ueff , we find that the value of ω for which the two roots kI

and kB merge on top of the obstacle (respectively in the
downstream asymptotic region) is ωmin ≈ 0.8 Hz (respec-
tively ωmax ≈ 5 Hz).
We then measured the two-point correlation function

evaluated at the same frequency and two different wave
vectors:

G2ðω; k; k0Þ≡ jhδ ~hðω; kÞδ ~hðω; k0Þ�ij × ðSkSk0 Þ−1: ð3Þ
In the left plot of Fig. 4, we show G2ðω; k; k0Þ in the ðk; k0Þ
plane for ω ¼ 2.5 Hz. Using the effective values heff and
Ueff , the nonvanishing correlations in the k, k0 plane are
found along the lines drawn in Fig. 3, as expected. We note
that the B and H modes of opposite energy are well
correlated. We also note that the long-wavelength modes I
and R are correlated with both B and H modes. However,
we cannot clearly separate the contributions of I and R
modes. Since numerical simulations (see Supplemental
Material [24]) indicate that the copropagating (R) mode
is only weakly coupled to I, B, and H, in what follows, we
only study the power and the strength of correlations of
these three modes.
In the upper plot of Fig. 5 we show naðωÞ≡

Pðω; kaÞ=jdka=dωj as a function of ω, where kaðωÞ are
the three counterpropagating roots. This quantity gives, up
to an overall factor, the mean number of quasiparticles per
unit angular frequency interval [10,21]. The power spectra
of the two dispersive modes B andH are comparable except
in a domain near ωmin ≈ 0.8 Hz where there are more B
modes. The hydrodynamical I modes have less power by a
factor ∼10, except below ωmin where their power is much
larger. (In the absence of an obstacle, the observed noise
power is completely dominated by the hydrodynamical
modes I and R, and there are no significant correlations
between I and B, H modes, see Supplemental
Material [24]).

FIG. 4. In the left panel, we show the noise correlation function
of Eq. (3) for ω ¼ 2.5 Hz. The color scale is the same as in Fig. 1.
Dashed lines show the dispersion relation in the ðk; k0Þ plane, see
Fig. 3. The circles are centered on ðkω; k0ωÞ where kω and k0ω are
two roots of the dispersion relation for the considered frequency
ω. The letters B and H designate the power of the short-
wavelength modes with opposite energies, and BH their corre-
lations. In the right panel, we show again Eq. (3) when the wave
maker is sending the incident wave I with ω ¼ 2.5 Hz. The IB
and IH correlations are clearly visible.
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FIG. 3. Here we show the loci where k, k0 are two roots of
Eq. (1) for ω ∈ Rþ in a flow with the same parameters as in
Fig. 1. The oblique black segments show k ¼ k0 for the four
modes B, I, R, H. The three continuous curves show fk; k0g ¼
fkI; kBg (blue), fkI; kHg (red), fkB; kHg (purple), while the
dashed lines fkI; kRg (green), fkR; kBg (blue), and fkR; kHg
(red), involve the mode kR. Dotted lighter curves correspond to
ω < 0. They are obtained from correlations with positive ω by
ðk; k0Þ → ð−k;−k0Þ.
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To quantify the strength of the correlations, we study the
ratio of the cross-correlations over the square root of the
product of the autocorrelations

g2ðω; a; bÞ≡ G2ðω; ka; kbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðω; ka; kaÞG2ðω; kb; kbÞ

p ; ð4Þ

where kaðωÞ, kbðωÞ are two roots for a given ω. For any
statistical ensemble, g2 is necessarily smaller than 1. As
explained in the Supplemental Material [24], g2 involves
the classical counterparts of the observables which are
currently used in quantum settings to assert that the state of
the scattered waves kaðωÞ, kbðωÞ is entangled [15–18]. The
lower plot of Fig. 5 shows three types of correlations: the
BH correlations are stronger than the two other ones, since
g2ðω;B;HÞ is close to 0.7 (except near 0.6 Hz). This
indicates that 70% of B and H modes are in correlated BH
pairs. The IH and IB correlations are below 0.3 over most
of the frequency domain. This implies that more than 50%
of BH pairs do not come from observed I modes with
k⊥ ¼ 0. It probably means that a significant fraction of BH

pairs have a nonvanishing k⊥. (At present we are not able to
separate the contributions of B and H modes with and
without transverse wave number, as the corresponding
curves on the dispersion relation are very close to each
other, see Fig. 1.) Some BH pairs should also be produced
by incidentwavesH and R from the left. In addition, not all
the incident I-mode noise is taken into account if some of it
is generated by fluctuations in the region x < 0.45 m. An
effective description of this generation could be obtained
from adapting to the present case the driven-damped wave
equation of Ref. [36].
The properties of the scattering can be more clearly

studied when sending an I wave towards the obstacle,
as was done in Refs. [4,6,23]. The corresponding values
of G2 are shown in the right panel of Fig. 4 for
ω ≈ 2.5 Hz > ωmin. The power of the reflected B wave
is close to that of the incident one, as expected from the
validity of the adiabatic approximation in this regime [3].
The negative-energy H wave remains relatively small in
amplitude. However, HI and HB correlations are clearly
visible, showing that H and B waves are produced by the
analogue Hawking effect. This is further clarified by
the analysis of the scattering coefficients presented in
the Supplemental Material [24].
To summarize, we observed the statistical properties of

the water depth fluctuations downstream from an obstacle
in a flow with a large maximum Froude number. The
negative-energy modes H are highly populated, strongly
correlated with the positive-energy modes B, but more
weakly correlated with the I modes. The noise correlations
have the main features expected from the Hawking effect,
whose correlations we observed also in the stimulated case
with a wave maker. Further experiments and theoretical
work are required to clarify all of the processes behind
these observations.
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