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The bicollinear antiferromagnetic order experimentally observed in FeTe is shown to be stabilized by the
coupling ~g12 between monoclinic lattice distortions and the spin-nematic order parameter with B2g

symmetry, within a three-orbital spin-fermion model studied with Monte Carlo techniques. A finite but
small value of ~g12 is required, with a concomitant lattice distortion compatible with experiments, and a
tetragonal-monoclinic transition strongly first order. Remarkably, the bicollinear state found here displays
a planar resistivity with the “reversed” puzzling anisotropy discovered in transport experiments.
Orthorhombic distortions are also incorporated, and phase diagrams interpolating between pnictides
and chalcogenides are presented. We conclude that the spin-lattice coupling we introduce is sufficient to
explain the challenging properties of FeTe.
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Introduction.—The chalcogenide FeTe is an unusual
member of the iron-based superconductor family [1–4].
Angle-resolved photoemission (ARPES) [5] for FeTe
revealed substantial mass renormalizations indicative of
electrons that are more strongly interacting than in pnic-
tides (see also Ref. [6]). The absence of Fermi surface (FS)
nesting instabilities was also established [7,8]. Moreover,
using single-crystal neutron diffraction, “bicollinear” mag-
netism was reported in FeTe [9]. This exotic antiferro-
magnetic (AFM) state is known as the E phase in
manganites [10]. Phenomenological approaches rationalize
the bicollinear state based on Heisenberg J1-J2-J3 models
[11] if the furthest distance coupling J3 is assumed to be
robust. Effective spin models [11,12] are certainly valid
descriptions after the lattice distortion occurs, but they do
not illuminate the fundamental reasons for the bicollinear
state stability [13–15].
Upon cooling, experimentally the bicollinear state is

reached via a robust first-order phase transition [9,16,17],
with a concomitant tetragonal (T etra) to monoclinic (Mono)
lattice distortion. The reported distortions in Fe1.076Te
and Fe1.068Te are δM ¼ jaM − bMj=ðaM þ bMÞ ∼ 0.007
[9] (aM and bM are the low-temperature lattice parameters
in the Mono notation). This distortion is comparable to the
orthorhombic (Orth) lattice distortion in BaFe2As2 [18]
δO ¼ jaO − bOj=ðaO þ bOÞ ∼ 0.004 (now with aO and bO
the low-temperature lattice parameters in theOrth notation).
Since the lattice is considered a “passenger” in the
pnictides, it may be suspected that it also plays a secondary
role for chalcogenides [19].
Contrary to this reasoning, here we argue that the lattice

may play a more fundamental role in FeTe than previously
anticipated. Specifically, we construct a spin-fermion (SF)
model where lattice and spins are coupled in a manner that

includes the Mono distortion of FeTe. Using Monte Carlo
techniques, we found a strong first-order T etra to Mono
lattice transition, as in experiments [9]. Moreover, the
bicollinear magnetic order spontaneously arises at the
same critical temperature. All this is achieved with a
(dimensionless) spin-lattice coupling ~g12 ≳ 0.10–0.25 that
is not strong. Surprisingly, we also find the same puzzling
reversed anisotropy in the low-temperature resistivity
recently reported [20,21], with the AFM direction more
resistive than the ferromagnetic (FM), contrary to results in
pnictides.
We also include the spin-lattice coupling ~g66 that

favors orthorhombicity, although in this case the crystal’s
geometry—with nearest-neighbor (NN) and next-NN
(NNN) hoppings of similar strength and associated FS
nesting—already favors the concomitant ðπ; 0Þ collinear
magnetism even without the lattice. Our analysis inter-
polates between (collinear) pnictides and (bicollinear)
chalcogenides using the same hopping amplitudes
because band structure calculations give similar results
for both [22]. In fact, the high-temperature regime
displays a FS with the canonical hole-electron pockets,
naively suggesting that only Orth and ðπ; 0Þ spin order
could be stabilized. However, our calculations show that
strong first-order transitions can induce a low-temperature
state with no precursors at high temperatures.
The presence of both itinerant and localized character-

istics in neutron experiments for Fe1.1Te [23] suggests
that the SF model provides a proper framework. While
we cannot fully incorporate the electronic interactions,
the Hund coupling of the SF model mimics a Hubbard U
by reducing double occupancy at each orbital [8]. In these
respects, our study has the same accuracy as in the
successful description of manganites [10,24].
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Model.—The SF Hamiltonian used here is based on the
original purely electronic model [25,26], supplemented by
couplings to the lattice degrees of freedom [27,28]

HSF ¼ HHopp þHHund þHHeis þHStiff þHSLO þHSLM:

ð1Þ

HHopp is the three-orbital (dxz, dyz, dxy) tight-binding Fe-Fe
hopping of electrons, with hopping amplitudes selected to
reproduce ARPES data [see Eqs. (1)–(3) and Table 1 of
Ref. [29]]. The undoped-limit average electronic density
per iron and per orbital is n ¼ 4=3 [29], and a chemical
potential in HHopp [28] controls its value. The Hund
interaction is HHund ¼ −JH

P
i;αSi · si;α, where Si are

localized spins at site i and si;α are itinerant spins
corresponding to orbital α at the same site [30].
Electrons in the nonitinerant orbitals dx2−y2 and d3z2−r2
are assumed to have hopping amplitudes smaller than for
the itinerants, thus effectively increasing their Hubbard U
to bandwidth W ratio. For this reason, a strong coupling
expansion generates HHeis that contains the NN and NNN
Heisenberg interactions among those localized spins, with
respective couplings JNN and JNNN and ratio JNNN=JNN ¼
2=3 [31]. The NN and NNN Heisenberg couplings are
comparable because Fe-Fe hopping occurs via Te atoms at
the center of Fe plaquettes [32]. However, wewill show that
JNN and JNNN are not crucial for our main conclusions.
HStiff is the lattice stiffness (Lennard-Jones potential) to
speed up convergence [27,28].
Previous SF model investigations addressed the

T etra-Orth transition as in SrFe2As2 [27]. The coupling
of the spins with the Orth lattice distortion [27] is given
by HSLO ¼ −g66

P
iΨ

NN
i ϵ66ðiÞ [33,34], where g66 is the

canonical Orth spin-lattice coupling [35] and the spin NN
nematic order parameter is

ΨNN
i ¼ 1

2
Si · ðSiþy þ Si−y − Siþx − Si−xÞ; ð2Þ

where x and y are unit vectors along the x and y axes,
respectively. ΨNN

i is 2 in the perfect ðπ; 0Þ state shown in
Fig. 1(a). ϵ66ðiÞ is the lattice Orth strain defined in terms of
the positions of the As, Se, or Te atoms with respect to their
neighboring Fe. Its precise definition is [27]

ϵ66ðiÞ ¼
1

4
ffiffiffi
2

p
X4

ν¼1

ðjδyi;νj − jδxi;νjÞ; ð3Þ

where δi;ν ¼ ðδxi;ν; δyi;νÞ (ν ¼ 1; ...; 4) is the distance
between Fe at i and one of its four neighbors As or Te
(Fig. S1, Supplemental Material, Ref. [36]). The As=Te
atoms move locally from their equilibrium position only
along the x and y directions for simplicity. Both ΨNN

i and
ϵ66ðiÞ transform as the B1g representation of the D4h group.

The crucial novel term HSLM ¼ −g12
P

iΨ
NNN
i ϵ12ðiÞ

introduced here provides the coupling between the spin
and the Mono lattice distortion [42], with strength g12.
The spin NNN nematic order parameter is

ΨNNN
i ¼ 1

2
Si · ðSiþxþy þ Si−x−y − Siþx−y − Si−xþyÞ: ð4Þ

ΨNNN
i becomes 2 in the perfect ðπ=2;−π=2Þ state of

Fig. 1(b) [43]. ϵ12ðiÞ is the lattice Mono strain defined in
terms of the Fe-Te=As distances δi;ν as

ϵ12ðiÞ ¼
1

8
ðjδi;2j þ jδi;4j − jδi;1j − jδi;3jÞ: ð5Þ

ϵ12ðiÞ transforms as the B2g representation. For this reason,
we must use ΨNNN

i , which also transforms as B2g, in HSLM

so that it is invariant under the D4h group. This simple
symmetry argument is the reason why the bicollinear state
is stabilized by the monoclinic distortion.
HSF was studied with the same Monte Carlo (MC)

procedure employed in Ref. [27] (see also Refs. [36,44]).
Here, only a detailed description of the new lattice coupling
~g12 will be provided. During the simulation, the As/Te
atoms can move locally away from their equilibrium
positions on the x-y plane, while the Fe atoms can move
globally in two ways: (i) via anOrth distortion characterized
by a global displacement ðrx; ryÞ from the equilibrium

position ðxð0Þi ; yð0Þi Þ of each iron with rα ¼ 1þ Δα

(Δα ≪ 1; α ¼ x or y) [Fig. 1(c)] and (ii) via a Mono
distortion where the angle between two orthogonal Fe-Fe
bonds is allowed to change globally to 90°þ θ with the
four angles in theMono plaquette adding to 360° so that the
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FIG. 1. (a) The collinear ðπ; 0Þ AFM ordered state. (b) The
bicollinear ðπ=2;−π=2Þ AFM ordered state. (c) Schematic
drawing of the Fe lattice equilibrium position in the T etra (black
symbols) and Orth (red symbols) phases (four Fe’s are indicated
with filled circles and labeled by their site index i). (d) Same as
(c) but for the Mono case.

PRL 117, 117201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 SEPTEMBER 2016

117201-2



next angle in the plaquette becomes 90° − θ, with θ a small
angle [Fig. 1(d)]. In addition, the localized (assumed
classical) spins Si and atomic displacements ðδxi;ν; δyi;νÞ that
determine the Orth or Mono lattice distortion ϵ66ðiÞ [27,28]
and ϵ12ðiÞ are also MC evaluated. In Ref. [36], the spin
and lattice susceptibilities χSðkx;kyÞ, χδO , and χδM and the
dimensionless couplings ~g66 and ~g12 are defined.
Results.—In real chalcogenides, both B1g and B2g

magnetic fluctuations should be present and the magni-
tude of their respective couplings to Orth and Mono
distortions depends on doping, replacing Te by Se or
iron excess, as in Fe1þyTe. In addition, weak B2g

fluctuations may also exist in pnictides. For this reason,
our study will address the MC phase diagrams, varying
temperatures and couplings in a wide range. Consider
first the case JNN ¼ JNNN ¼ 0. One of our most important
results is in Fig. 2. At the left, a realistic Tmax

O ≈ 170 K is
obtained for the transition to the collinear=Orth state,
with an Orth distortion δO ≈ 0.004–0.008, compatible
with experiments [9] and previous studies [27]. As ~g12
increases and ~g66 linearly decreases, then Tmax

O naturally
decreases. When ~g12 ≈ 0.16 and ~g66 ≈ 0.08, remarkably
now the FeTe bicollinear=Mono phase appears at TM (red
triangles). At the right in Fig. 2, the critical temperature is
∼70 K similar to FeTe experiments [45]. Moreover, in the
range shown, the monoclinic lattice distortions are small
(for explicit values, see Fig. S4 of Ref. [36]) [46].
Bicollinear order is stabilized because with increasing

~g12, the nematic order parameter ΨNNN
i in HSLM becomes

nonzero to lower the energy. In each odd-even site sub-
lattice, ΨNNN

i favors a state with parallel spins along one
diagonal direction and antiparallel in the other (equivalent
to the collinear order but rotated by 45°). The parallel
locking of the two independent spin sublattices leads to the
state in Fig. 1(b) (or rotated ones).

As already explained, the purely fermionic SF model
develops a collinear ðπ; 0Þ tendency because of FS nesting
in the tight-binding sector [26]. Since spin and lattice are
linearly coupled, an Orth distortion is induced even for an
infinitesimal ~g66. On the other hand, regardless of ~g66, the
coupling ~g12 needed to stabilize the bicollinear=Mono state
is finite because it must first “fight” against the ðπ; 0Þ order.
However, in practice, this critical coupling is small
∼0.1–0.25 and within experimental range.
To analyze the universality of the Fig. 2 phase diagram,

we also investigated the effect of adding NN and NNN
Heisenberg couplings along the line from ð~g12; ~g66Þ ¼
ð0; 0.16Þ to (0.40,0) (inset of Fig. 2). Qualitatively, the
results are similar. At (0.40,0) in the inset, the largest value
of ~g12 considered here, the Mono distortion is δM ≈ 0.004,
still compatible with experiments [9]. One interesting
difference, though, between the two cases is the appearance
of an intermediate region at ~g12 ≈ 0.28 in Fig. 2 (inset),
where upon heating, a transition Mono to Orth is reached
before the system eventually becomes paramagnetic.
Experimentally, in Fe1þyTe, an intermediate Orth phase
with incommensurate magnetic order indeed exists
between the T etra and Mono phases [45,47] with TO ≈
60 K and TM ≈ 50 K, at y ≈ 0.13. Our finite lattices do not
have enough resolution to study the subtle incommensurate
magnetism, but we conjecture that adding Fe to FeTe may
effectively increase the spin-lattice coupling to reach the
inset intermediate regime.
Another interesting result found here is that the

bicollinear=Mono phase transition is strongly first order,
as in experiments [9], as indicated by the order parameters
discontinuities in Fig. 3 and by the MC time evolution
histogram [Fig. 4(a)]. At high temperature, ðπ; 0Þ fluctua-
tions first develop (as implied by the inset of Fig. 2),
leading to a free energy local minimum. However, upon
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FIG. 2. Phase diagram along the straight line from ð~g12; ~g66Þ ¼
ð0; 0.24Þ to (0.24,0), at JH ¼ 0.1 eV and JNN ¼ JNNN ¼ 0. Inset:
Same phase diagram but along the straight line from ð~g12; ~g66Þ ¼
ð0; 0.16Þ to (0.40,0), at JH ¼ 0.1 eV, JNN ¼ 0.012 eV, and
JNNN ¼ 0.008 eV. Blue circles (red triangles) denote TO (TM),
the transition temperatures to the Orth=collinear (Mono=
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further cooling, the bicollinear minimum with a different
symmetry also develops, and eventually a crossing occurs
with first-order characteristics because one local state
cannot evolve smoothly into the other.
Remarkably, the correct behavior for the resistivity

anisotropy of FeTe [20,21] is also observed here (details
are given in Ref. [36]). In the ðπ; 0Þ phase, FS nesting
opens a pseudogap for the yz orbital [26,27,48]. Because
this orbital relates to electronic hopping along the ferro-
magnetic y axis, then the FM resistivity is the largest in
pnictides. However, the reversed anisotropy with lower
resistance along the FM direction (open circles) was found
in the bicollinear phase [Fig. 4(b)] (the technique used is
explained in Ref. [36]). Moreover, this reversed effect is
amplified as JH increases. The key clues to explain the
effect are now clear: (i) an electron hopping along the
plaquette diagonal in the AFM direction pays an energy JH,
but the hopping along the plaquette diagonal FM direction
does not, and (ii) because FS nesting does not involve wave
vectors such as ðπ=2;−π=2Þ, then pseudogaps are not
created due to nesting, as in pnictides. Then, in essence, the
reversed resistance found here is characteristic of large

Hund coupling materials [49], such as manganites [10],
where it is also known that the AFM direction is more
resistive than the FM direction.
A paradox of FeTe is that first principles studies predict

FS nesting and thus ðπ; 0Þ order, as in pnictides. For
this reason, we calculated the FS at couplings where the
ground state is Mono. Figure 4(c) shows the FS in the
high-temperature T etra state. It is similar to that of the iron
pnictides, suggesting ðπ; 0Þ order upon cooling (the Γ
centered features are blurry because of how a shallow
pocket is affected by temperature). However, because of the
sharp first-order transition, the Mono state reached at low
temperature has a peculiar FS [Fig. 4(d)]: while the electron
pockets are similar, the squarish Γ hole pocket is different
from that of pnictides. In addition, “shadow bands” at
ð�π=2;�π=2Þ develop, as in ARPES [7], indicative of
couplings stronger than for pnictides [50].
Discussion.—Using computational techniques applied to

the SF model, including a spin-lattice Mono distortion in
the B2g channel, we showed that the puzzling phenom-
enology of FeTe is well reproduced. This includes the
presence of bicollinear magnetic order, Mono lattice dis-
tortions, a strong first-order T etra-Mono transition, nested
Fermi surfaces at high temperature naively favoring col-
linear order, and last but not least also the low-temperature
reversed anisotropic resistances between the AFM and FM
directions. Moreover, all this is achieved with spin-lattice
dimensionless couplings less than 1 and with associated
small lattice distortions δM ∼ 10−3. While in pnictides the
resistance anisotropy is related to FS nesting and a yz
orbital pseudogap [48], in chalcogenides the strength of the
Hund coupling is crucial. To our knowledge, the spin-
lattice interaction discussed here provides the first com-
prehensive explanation of the challenging experimental
properties of FeTe.

Discussions with S. Liang, P. Dai, and J. Tranquada are
acknowledged. C. B. B. was supported by the National
Science Foundation, under Grant No. DMR-1404375.
E. D. and A. M. were supported by the U.S. Department
of Energy, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division.

[1] D. C. Johnston, Adv. Phys. 59, 803 (2010).
[2] P. C. Dai, J. P. Hu, and E. Dagotto, Nat. Phys. 8, 709 (2012).
[3] Z. P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932

(2011).
[4] Recent results also indicate charge ordering in FeTe; seeWei

Li, Wei-Guo Yin, Lili Wang, Ke He, Xucun Ma, Qi-Kun
Xue, and Xi Chen, Phys. Rev. B 93, 041101(R) (2016).

[5] Y. Zhang et al., Phys. Rev. B 82, 165113 (2010).
[6] Y. M. Dai, A. Akrap, J. Schneeloch, R. D. Zhong, T. S. Liu,

G. D. Gu, Q. Li, and C. C. Homes, Phys. Rev. B 90,
121114(R) (2014).

FIG. 4. (a) Histogram of the MC time evolution of ΨNNN and
δM, at the critical temperature of Fig. 3 (T ¼ 72 K), illustrating its
bimodal character compatible with first-order characteristics.
(b) Resistance (h=2e2 units) vs temperature in the bicollinear
state (~g12 ¼ 0.24, ~g66 ¼ 0, JH ¼ 0.2 eV, no Heisenberg terms).
Filled (open) symbols denote resistivities along the AFM (FM)
direction. (c),(d) Symmetrized Fermi surface (~g12 ¼ 0.24,
~g66 ¼ 0, JH ¼ 0.2 eV, no Heisenberg terms). (c) The high-
temperature paramagnetic phase (T ¼ 360 K). (d) The bicol-
linear phase (T ¼ 10 K). The FS orbital composition notation is
blue (xz), green (yz), and red (xy). In the nonsymmetrized FS
(not shown), a gap opens along the AFM diagonal direction in the
xz and yz orbitals, compatible with the resistivity results.

PRL 117, 117201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 SEPTEMBER 2016

117201-4

http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1038/nphys2438
http://dx.doi.org/10.1038/nmat3120
http://dx.doi.org/10.1038/nmat3120
http://dx.doi.org/10.1103/PhysRevB.93.041101
http://dx.doi.org/10.1103/PhysRevB.82.165113
http://dx.doi.org/10.1103/PhysRevB.90.121114
http://dx.doi.org/10.1103/PhysRevB.90.121114


[7] Y. Xia, D. Qian, L. Wray, D. Hsieh, G. F. Chen, J. L. Luo,
N. L. Wang, and M. Z. Hasan, Phys. Rev. Lett. 103, 037002
(2009).

[8] The importance of the Hund coupling was also remarked
within ARPES by P.-H. Lin, Y. Texier, A. Taleb-Ibrahimi, P.
Le Fevre, F. Bertran, E. Giannini, M. Grioni, and V. Brouet,
Phys. Rev. Lett. 111, 217002 (2013).

[9] W. Bao et al., Phys. Rev. Lett. 102, 247001 (2009); S. Li
et al., Phys. Rev. B 79, 054503 (2009).

[10] E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1
(2001).

[11] F. Ma, W. Ji, J. Hu, Z.-Y. Lu, and T. Xiang, Phys. Rev. Lett.
102, 177003 (2009).

[12] C. Fang, B. A. Bernevig, and J. Hu, Europhys. Lett. 86,
67005 (2009).

[13] In addition, discrepancies with neutron scattering have been
unveiled; see O. J. Lipscombe, G. F. Chen, C. Fang, T. G.
Perring, D. L. Abernathy, A. D. Christianson, T. Egami, N.
Wang, J. Hu, and P. Dai, Phys. Rev. Lett. 106, 057004
(2011); S. Chi, J. A. Rodriguez-Rivera, J. W. Lynn, C.
Zhang, D. Phelan, D. K. Singh, R. Paul, and P. Dai, Phys.
Rev. B 84, 214407 (2011).

[14] Hartree-Fock real-space studies of the five-orbital Hubbard
model without lattice distortions revealed a rich phase
diagram [see Q. Luo and E. Dagotto, Phys. Rev. B 89,
045115 (2014)]. Among the plethora of different magnetic
states, the E phase was found, but in a very small and
unrealistic region at large U and n ∼ 5.75.

[15] The lattice degrees of freedom introduced here can be
integrated out and generate a biquadratic term that favors
bicollinear order; see S. Ducatman, R. M. Fernandes, and
N. Perkins, Phys. Rev. B 90, 165123 (2014).

[16] G. F. Chen, Z. G. Chen, J. Dong, W. Z. Hu, G. Li, X. D.
Zhang, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. B
79, 140509(R) (2009).

[17] D. Fobes et al., Phys. Rev. Lett. 112, 187202 (2014).
[18] Q. Huang, Y. Qiu, Wei Bao, M. A. Green, J. W. Lynn, Y. C.

Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett.
101, 257003 (2008).

[19] In Ref. [17], an electronic delocalization transition was
proposed to lift the xz=yz orbital degeneracy, leading to
ferro-orbital order along the ferromagnetic zigzag chains of
the bicollinear state of Fe1þyTe. See also I. Zaliznyak, A. T.
Savici, M. Lumsden, A. Tsvelik, R. Hu, and C. Petrovic,
Proc. Natl. Acad. Sci. U.S.A. 112, 10316 (2015).

[20] L. Liu, T. Mikami, M. Takahashi, S. Ishida, T. Kakeshita, K.
Okazaki, A. Fujimori, and S. Uchida, Phys. Rev. B 91,
134502 (2015).

[21] J. Jiang, C. He, Y. Zhang, M. Xu, Q. Q. Ge, Z. R. Ye, F.
Chen, B. P. Xie, and D. L. Feng, Phys. Rev. B 88, 115130
(2013).

[22] See, e.g., discussion and citations in Ref. [1].
[23] I. A. Zaliznyak, Z. Xu, J. M. Tranquada, G. Gu, A. M.

Tsvelik, and M. B. Stone, Phys. Rev. Lett. 107, 216403
(2011).

[24] Other ARPES results were interpreted via polarons, as in
manganites, also concluding that the lattice plays an
important role; see Z. K. Liu et al., Phys. Rev. Lett. 110,
037003 (2013); Mechanisms relying on Jahn-Teller dis-
tortions, double exchange processes, and its associated

Hund coupling, as in manganites, have also been discussed
[see A. M. Turner, F. Wang, and A. Vishwanath, Phys. Rev.
B 80, 224504 (2009); M. Hirayama, T. Misawa, T. Miyake,
and M. Imada, J. Phys. Soc. Jpn. 84, 093703 (2015)].

[25] W.-G. Yin, C.-C. Lee, and W. Ku, Phys. Rev. Lett. 105,
107004 (2010).

[26] S. Liang, G. Alvarez, C. Sen, A. Moreo, and E. Dagotto,
Phys. Rev. Lett. 109, 047001 (2012).

[27] S. Liang, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 111,
047004 (2013).

[28] S. Liang, A. Mukherjee, N. D. Patel, C. B. Bishop, E.
Dagotto, and A. Moreo, Phys. Rev. B 90, 184507 (2014).

[29] M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto,
Phys. Rev. B 81, 014511 (2010).

[30] The localized spins’ magnitude is set to Si ¼ 1. Its actual
value can be absorbed into the Hamiltonian parameters.

[31] Any ratio larger than 1=2 leads to similar results.
[32] A complete study of the bicollinear magnetic state requires

a five-orbital Hubbard model, plus the lattice, all at finite
temperatures. Such a formidable challenge is not practical:
the SF model is a simplification that allows for the study of
structural, orbital, and magnetic effects simultaneously.

[33] R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and
J. Schmalian, Phys. Rev. B 85, 024534 (2012).

[34] R. M. Fernandes and J. Schmalian, Supercond. Sci. Technol.
25, 084005 (2012).

[35] The spin in HSLO and HSLM is only the localized spin for
computational simplicity.

[36] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.117201, which in-
cludes Refs. [37–41], for technical details of the lattice
degrees of freedom and their Monte Carlo update, numerical
values for the lattice distortions and spin structure factors
varying couplings, and resistivity plots also at various sets of
parameters.

[37] Q. Huang, Y. Qiu, Wei Bao, M. A. Green, J. W. Lynn, Y. C.
Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett.
101, 257003 (2008).

[38] J. Salafranca, G. Alvarez, and E. Dagotto, Phys. Rev. B 80,
155133 (2009).

[39] J. A. Vergés, Comput. Phys. Commun. 118, 71 (1999).
[40] M. A. Tanatar et al., arXiv:1511.04757 [Phys. Rev. Lett (to

be published)].
[41] J-H. Chu, J. G. Analytis, K. De Greve, P. L. McMahon, Z.

Islam, Y. Yamamoto, and I. R. Fisher, Science 329, 824
(2010).

[42] H.-H. Kuo, J.-H. Chu, S. A. Kivelson, and I. R. Fisher,
Science 352, 958 (2016).

[43] The degeneracy of the bicollinear states with momentum
ðπ=2; π=2Þ and ðπ=2;−π=2Þ is broken by the Mono dis-
tortion. Here, we assume that the state with momentum
ðπ=2;−π=2Þ is stabilized.

[44] The physical range for JH, JNN, and JNNN was also
extensively discussed before in Refs. [26,27] (see Ref. [36]
as well).

[45] Y. Mizuguchi, K. Hamada, K. Goto, H. Takatsu, H.
Kadowaki, and O. Miura, Solid State Commun. 152, 1047
(2012).

[46] The low-temperature (10 K) phase diagrams varying ~g66 and
~g12 are also in Ref. [36] [see Fig. S2 (S3) with (without)

PRL 117, 117201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 SEPTEMBER 2016

117201-5

http://dx.doi.org/10.1103/PhysRevLett.103.037002
http://dx.doi.org/10.1103/PhysRevLett.103.037002
http://dx.doi.org/10.1103/PhysRevLett.111.217002
http://dx.doi.org/10.1103/PhysRevLett.102.247001
http://dx.doi.org/10.1103/PhysRevB.79.054503
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
http://dx.doi.org/10.1103/PhysRevLett.102.177003
http://dx.doi.org/10.1103/PhysRevLett.102.177003
http://dx.doi.org/10.1209/0295-5075/86/67005
http://dx.doi.org/10.1209/0295-5075/86/67005
http://dx.doi.org/10.1103/PhysRevLett.106.057004
http://dx.doi.org/10.1103/PhysRevLett.106.057004
http://dx.doi.org/10.1103/PhysRevB.84.214407
http://dx.doi.org/10.1103/PhysRevB.84.214407
http://dx.doi.org/10.1103/PhysRevB.89.045115
http://dx.doi.org/10.1103/PhysRevB.89.045115
http://dx.doi.org/10.1103/PhysRevB.90.165123
http://dx.doi.org/10.1103/PhysRevB.79.140509
http://dx.doi.org/10.1103/PhysRevB.79.140509
http://dx.doi.org/10.1103/PhysRevLett.112.187202
http://dx.doi.org/10.1103/PhysRevLett.101.257003
http://dx.doi.org/10.1103/PhysRevLett.101.257003
http://dx.doi.org/10.1073/pnas.1503559112
http://dx.doi.org/10.1103/PhysRevB.91.134502
http://dx.doi.org/10.1103/PhysRevB.91.134502
http://dx.doi.org/10.1103/PhysRevB.88.115130
http://dx.doi.org/10.1103/PhysRevB.88.115130
http://dx.doi.org/10.1103/PhysRevLett.107.216403
http://dx.doi.org/10.1103/PhysRevLett.107.216403
http://dx.doi.org/10.1103/PhysRevLett.110.037003
http://dx.doi.org/10.1103/PhysRevLett.110.037003
http://dx.doi.org/10.1103/PhysRevB.80.224504
http://dx.doi.org/10.1103/PhysRevB.80.224504
http://dx.doi.org/10.7566/JPSJ.84.093703
http://dx.doi.org/10.1103/PhysRevLett.105.107004
http://dx.doi.org/10.1103/PhysRevLett.105.107004
http://dx.doi.org/10.1103/PhysRevLett.109.047001
http://dx.doi.org/10.1103/PhysRevLett.111.047004
http://dx.doi.org/10.1103/PhysRevLett.111.047004
http://dx.doi.org/10.1103/PhysRevB.90.184507
http://dx.doi.org/10.1103/PhysRevB.81.014511
http://dx.doi.org/10.1103/PhysRevB.85.024534
http://dx.doi.org/10.1088/0953-2048/25/8/084005
http://dx.doi.org/10.1088/0953-2048/25/8/084005
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.117201
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.117201
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.117201
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.117201
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.117201
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.117201
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.117201
http://dx.doi.org/10.1103/PhysRevLett.101.257003
http://dx.doi.org/10.1103/PhysRevLett.101.257003
http://dx.doi.org/10.1103/PhysRevB.80.155133
http://dx.doi.org/10.1103/PhysRevB.80.155133
http://dx.doi.org/10.1016/S0010-4655(99)00206-4
http://arXiv.org/abs/1511.04757
http://arXiv.org/abs/1511.04757
http://dx.doi.org/10.1126/science.1190482
http://dx.doi.org/10.1126/science.1190482
http://dx.doi.org/10.1126/science.aab0103
http://dx.doi.org/10.1016/j.ssc.2012.03.022
http://dx.doi.org/10.1016/j.ssc.2012.03.022


Heisenberg couplings]: in a broad range of couplings, the
bicollinear=Mono state is spontaneously stabilized.

[47] E. E. Rodriguez, C. Stock, P. Zajdel, K. L. Krycka, C. F.
Majkrzak, P. Zavalij, and M. A. Green, Phys. Rev. B 84,
064403 (2011).

[48] M. Daghofer, Q.-L. Luo, R. Yu, D. X. Yao, A. Moreo,
and E. Dagotto, Phys. Rev. B 81, 180514(R) (2010).

[49] Chalcogenides have higher magnetic moments than pnic-
tides and thus likely larger Hund couplings. We also noticed

that for JH ¼ 0.1 eV, we found that the reversed anisotropy
was still there but reduced (see Supplemental Material,
Ref. [36]).

[50] Nesting tendencies, even if not crucial, could potentially
lead to phase separation effects [A. O. Sboychakov, A. V.
Rozhkov, K. I. Kugel, A. L. Rakhmanov, and F. Nori, Phys.
Rev. B 88, 195142 (2013)]. While we checked that phase
separation is not present in our model, in the undoped
regime studied, it may occur upon doping.

PRL 117, 117201 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 SEPTEMBER 2016

117201-6

http://dx.doi.org/10.1103/PhysRevB.84.064403
http://dx.doi.org/10.1103/PhysRevB.84.064403
http://dx.doi.org/10.1103/PhysRevB.81.180514
http://dx.doi.org/10.1103/PhysRevB.88.195142
http://dx.doi.org/10.1103/PhysRevB.88.195142

