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We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an
origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse
mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable
by pressure control and the custom design of the crease pattern. The collapse mechanism features many
attractive characteristics for applications such as energy absorption. The reported results also suggest a new
branch of origami study focused on its nonlinear mechanics associated with folding.
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Collapsible structures and materials have played vital
roles in modern engineering for personal safety and equip-
ment protection purposes; they can sustain significant
deformation without inducing a large reaction force and
absorb a substantial amount of energy. A vast variety of
collapsible systems have been developed and implemented
[1–3], among which the cellular solids (such as honeycomb
core, lattice, foam, and their relatives) are particularly
promising. These microarchitectured systems are inher-
ently light weight, and more importantly, their collapsing
performance can be designed for a large range by tailoring
the underlying cellular topology [4–6]. However, despite of
the rich design variety, the collapse behavior of cellular
solids, as well as many other collapsible systems, originates
from the plastic deformation of their constituent materials;
as a result, their collapses are not recoverable, and the
associated energy absorbing performance cannot be con-
trolled on demand.
We report a recoverable and programmable collapse

mechanism via the rigid folding of a stacked origami
cellular solid that consists of embedded and pressurized
tubular channels. Rigid-foldable origami folds via bending
along the crease lines without deforming the facets; there-
fore, they can be made out of relatively stiff materials for
broader application appeal, including actuation and morph-
ing [7–11], deployable structures [12–17], robotic linkage
mechanisms [18–22], and mechanical metamaterials with
programmable properties such as a negative Poisson’s ratio
and multistability [23–28].
The reported collapse mechanism originates from a

unique phenomenon that has never been exploited in
origami folding before: pressure-induced negative stiffness.
Because of the nonlinear relationship between the folding
kinematics and enclosed volume change, the stacked
origami with constant internal pressure starts to exhibit
negative stiffness when the external compressive force
reaches a critical level. As a result, the stacked origami

will collapse via rapid folding if the external force con-
tinues to increase until the self-locking or fully folded
configuration is reached. Unlike many aforementioned
collapsible systems, the collapse of origami involves only
folding, so it is recoverable once the external force is
released.
Furthermore, we show that the collapse of stacked

origami is programmable: The magnitude of the critical
force to induce collapse can be adjusted by pressure
control, and the range of deformation (or folding) asso-
ciated with the negative stiffness can be controlled via
crease customization and strategic pressurization.
Therefore, the recoverable and programmable collapse of
origami features a combination of many desired character-
istics that could enable unprecedented performance for
energy absorption, particularly for low-frequency and
large-force scenarios.
The following sections will start from an example of a

stacked origami cellular solid based on the classic Miura-
Ori crease and discuss the physical origin and experimental
verifications of the recoverable collapse via rigid folding.
Then we will discuss the strategies of programming such
collapse behaviors based on a more generic single collinear
crease and selective pressurization.
Pressure-induced stiffness and collapsing.—The back-

bone of the origami cellular solid is a set of rigid-foldable
sheets that are stacked and connected along their crease
lines [Fig. 1(a)]. The stacked origami has naturally
embedded tubular channels, so when pressurized it will
fold to the configuration with the maximum enclosed
volume. This is essentially a process of increasing entropy
due to inner energy reduction via volume expansion [29].
The pressurization also generates stiffness, because any
folding deformations away from the maximum volume
configuration would be resisted by pressure: The higher the
pressure, the stiffer it becomes. Since the origamis of
interest are rigid foldable, their quadrilateral facets can be
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assumed rigid and crease lines are treated as perfect hinges
with negligible torsional stiffness. The mechanical work
done by the pressure is conservative, so the total inner
energy (Π) of the system is a potential function of the gauge
pressure (P) and enclosed volume of the tubular channel
(V) so that Π ¼ PðV − V0Þ, where V0 is an arbitrary
reference volume where the potential energy is set to zero.
If an applied external force deforms the stacked origami via
folding, the reaction force generated by the internal
pressure is calculated based on the virtual work principle:

FX ¼ −PdV
dX

¼ −PdV
dθ

�
dX
dθ

�−1
; ð1Þ

where dX is the origami deformation along the orientation of
applied force and θ is a folding angle that characterizes the
amount of folding. The pressure-induced tangent stiffness at
different folding configurations would be the variation of
reaction force with respect to infinitesimal deformation:
KX ¼ ∂FX=∂X: For rigid-foldable origami, folding is a one-
degree-of-freedom mechanism so that the correlation
between the enclosed volume (dV), external deformation
(dX), and folding (dθ) is fully determined by the crease
patterns. Therefore, we have a large freedom, via the crease
pattern design, to program the pressure-induced reaction
force and stiffness characteristics. For example, a stacked
origami solid based on the classical Miura-Ori crease shows
anisotropic stiffness at the maximum volume configuration,
and we can program this anisotropy via tailoring the crease
design parameters (Appendix Sec. 1 [30]).
If the external force induces large deformations or

folding, the effective tangent stiffness varies significantly
at different folding configurations. For some crease pat-
terns, such a stiffness can reach zero at a critical configu-
ration and then becomes negative if the origami is folded
further [an experimental example based on the Miura-Ori
crease is shown in Figs. 1(b) and 1(c) and Appendix Sec. II
[30]]. For clarity, we will refer to the critical folding
configuration corresponding to zero stiffness as the “col-
lapsing” point. Such a change in the sign of the equivalent
stiffness can lead to the desired collapse behavior, because,
in the negative stiffness region, the stacked origami can
sustain a large deformation via folding without increasing
the reaction force. During the collapsing process, the
pressurized fluid is pushed out of the stacked origami to
maintain the required constant pressure. If this fluid flow is
unidirectional, the stacked origami can absorb external
energy from the applied force, so that the absorbed energy
ΔE ¼ −PΔV, where ΔV is the enclosed volume reduction.
The maximum possible energy absorption is equal to the
area of the region below the force displacement curves.
A closer observation on the force-deformation relation-

ships in Eq. (1) and the experiment results reveals many
unique and attractive characteristics of the pressure-
induced collapse. Unlike the aforementioned previous

studies, deformation or rigid folding of the staked origami
does not involve any plastic material deformation; there-
fore, the origami will return to its maximum volume
configuration once the external force is removed and the
fluid is allowed to be pumped back into the origami, so that
the collapsed structure is recoverable. Furthermore, the
magnitude of the critical force corresponding to the
collapsing point is linearly proportional to the internal
pressure level, and deformations (or folding angles) asso-
ciated with the negative stiffness region are solely functions
of the crease design.
Programming the collapse behavior with single collin-

ear vertices.—There are many different crease patterns that
can enable the pressure-induced collapse, as long as their
nonlinear folding kinematics shows a sign switch in
dV=dX. Therefore, we have a large freedom to tailor the
crease pattern and program the collapse behavior. Here we
adopt a single collinear crease pattern for such a purpose,
because it has a much richer crease design space compared
to the classic Miura-Ori crease. It also has a self-locking
mechanism so that we can prescribe the critical deforma-
tions corresponding to the start and ending of collapse.
The most fundamental element of the single collinear

crease consists of one vertex and the four crease lines that
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FIG. 1. Recoverable collapse from an example of a pressur-
ized origami cellular solid. (a) Stacking origami sheets into a
cellular solid with naturally embedded tubular channels. (b) A
3D printed channel prototype based on the Miura-Ori crease for
a pressure-induced stiffness and collapse test. (c) The force-
deformation relationships. Solid and dashed curves are ana-
lytical results; squares and diamonds are averaged experimental
results. To-scale geometries of the Miura-Ori solids are
illustrated at different important configurations: (0) flat sheet,
(1) maximum volume configuration, (2) collapsing point, and
(3) fully folded configuration.
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are connected to it [Fig. 2(a)]. The design of such vertex
element is determined by six parameters that remain
unchanged regardless of folding: They are the two collinear
crease line lengths (a1 and a2), zigzag crease line lengths
(b1 and b2), and two unique sector angles (γ1 and γ2).
Without the loss of generality, we assume 0 < γ1 ≤ 90° and
γ1 ≤ γ2 ≤ 180° − γ1: Since γ2 is assumed to be equal to or
greater than γ1 the facet 1-2-5-4 can touch facet 2-3-6-5 so
that rigid folding is stopped before the vertex unit is fully
folded into a flat state with L ¼ 0. This mechanism is called
self-locking, and it is an inherent property of single
collinear vertices. A special case occurs when γ1 equals
γ2, so that the vertex unit can be fully folded flat. The single
collinear vertex therefore becomes flat foldable. A more
special case occurs when γ1 ¼ γ2, a1 ¼ a2, and b1 ¼ b2;
the single collinear unit becomes the classic Miura-Ori
crease (folding animations in Movie S1 [30]).
Identical single collinear origami sheets can be stacked

and connected along their zigzag crease line to form a
three-dimensional topology [Figs. 2(b) and 2(d)]. Its rigid
folding is still a one-degree-of-freedom motion, and the
constituent sheets reach the locking configuration simulta-
neously. Since the stacked origami is periodic, we will
focus on the characteristics of an elementary unit cell,
consisting of two vertex elements, as a representation
of the whole system (Fig. 2; a tubular channel in
the stacked origami is essentially a series of unit cells).
Define nondimensional design parameters β ¼ b2=b1 and

κ ¼ sin γ2= sin γ1, and the unit cell length (L) and its
enclosed volume (V) are, respectively,

L ¼ b1 sin γ1
cos θ þ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − sin2θ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2γ1sin2θ

p ; ð2Þ

V ¼ 2a1a2b1sin2γ1 sin θðcos θ þ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − sin2θ

p
Þ; ð3Þ

where the folding angle θ is defined as the dihedral
angle between facet 1-2-5-4 and a reference x-y plane
(Appendix Sec. 3 [30]). The folding angle θm correspond-
ing to the maximum enclosed volume satisfies the follow-
ing equation by solving dV=dθ ¼ 0:

sin6θ − ð1þ κ2Þsin4θ þ
�
1 − κ4β2

4ð1 − β2Þ þ κ2
�
sin2θ

þ κ2ðκ2β2 − 1Þ
4ð1 − β2Þ ¼ 0. ð4Þ

Therefore, θm is only a function of β and κ. If the origami
is flat foldable (γ1 ¼ γ2 and κ ¼ 1), the enclosed volume
equation (3) simplifies to V ¼ a1a2b1sin2γ1ð1þ βÞ sin 2θ.
As a result, the maximum volume occurs at θm ¼ 45°
regardless of the crease line lengths.
By tailoring the single collinear crease design parame-

ters, one can program the origami unit cell length at the
maximum volume (Lm), collapsing (Lc), and locking (Ll)
configurations. For a flat foldable vertex, γ2 equals γ1
(κ ¼ 1), and its locking configurations is actually fully
folded with Ll ¼ 0. The reaction force equation (1) can be
simplified into a nondimensional form:

F̂ ¼ 2
cos 2θ
sin θ

sin γ1
cos2γ1

ð1 − sin2θsin2γ1Þ3=2; ð5Þ

where the nondimensional force F̂ ¼ F=ðPa1a2Þ.
Therefore, the normalized collapse performance of a flat-
foldable origami cell depends only on γ1. Figure 3(a)
illustrates some normalized force-deformation curves based
on different γ1 values; note that the two curves in the
previous figure 1(c) with two different pressure levels are
normalized to one curve in this figure. The critical folding
angle at the occurrence of collapsing (θc) can be calculated
by solving dF=dL ¼ 0 so that

sin2θc ¼ 1

8

�
1þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin4γ1 þ 10sin2γ1 þ 1

p
sin2γ1

�
: ð6Þ

Define a nondimensional origami unit cell length
L̂ ¼ L=ðb1 þ b2Þ, and the relationships between L̂m, L̂c,
L̂l, and γ1 are shown in Fig. 3(b). Negative stiffness exits
only when the sector angle γ1 > 45°. When γ1 equals 45°,
collapsing occurs exactly at the fully folded configuration
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FIG. 2. Adopting single collinear vertices to program the
collapse behavior. (a) A single collinear rigid-foldable origami
sheet, where the elementary vertex unit is highlighted. (b) Iden-
tical origami sheets can be stacked into a cellular solid, where the
equivalent vertices are labeled on both sheets to illustrate the
stacking arrangement. (c) Force-displacement relationship based
on an example design: γ1 ¼ 60°, γ2 ¼ 75°, a1 ¼ 38 mm,
a2 ¼ 57 mm, b1 ¼ 38 mm, and b2 ¼ 19 mm. Notice that the
negative stiffness region stops before the origami is fully folded
to L ¼ 0. (d) To-scale geometry of the origami cellular solids,
with the unit cell being highlighted.
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(L̂b ¼ L̂l ¼ 0); as γ1 increases from 45° to 90°, the
collapsing point moves monotonically from the fully folded
to the maximum volume configuration.
For generic single collinear vertices, the normalized

collapse performance depends not only on sector angle
γ1 but also on γ2 and the length ratio between the two
zigzag crease lines (β). Figures 3(c)–3(f) and Supplemental
Figs. S4 and S5 [30] illustrate the relationships between the
collapse performance and these three crease designs var-
iables. Negative stiffness exists only when sector angle
γ1 ≥ 45°, and a closer examination of the results shown in
Figs. 3(f)–3(h) reveals a large range of achievable combi-
nations of L̂m, L̂c, and L̂l (Appendix Sec. IV [30]).
Therefore, by tailoring the three crease variables (γ1, γ2,
and β), one has a large design space to program the desired
deformations at collapsing and locking (restabilization).
Stacking different origami sheets for integrated perfor-

mance.—Based on the correlations between the collapse
performance and crease designs, one can assemble different
origami sheets together into a foldable cellular solid
featuring a fully programmable collapse in terms of both
the critical force and deformations. For example, if the
stacked origami consists of two different sheets (designated
as sheets A and B), there can be three different unit cells
depending on their arrangements (Fig. 4; see Appendix
Sec. VI [30] for design constraints from stacking different
sheets). The first type of cell is formed by stacking two
sheets A, which is designated as an AA cell, and similarly
there are AB and BB types of cells. This concept is
illustrated and tested on a 3D printed tricell prototype
[Fig. 4(b)]. Despite their unique geometries, all these cells
reach locking simultaneously at a common locking
length (L̂l). However, they have different values of F̂
and L̂c at collapsing, as well as L̂m at the maximum volume
[Figs. 4(c) and 4(d)]. Therefore, by selectively pressuring

FIG. 3. The collapse performance based on different origami designs. (a) Normalized force-deformation curves of flat-foldable
origami. (b) The lengths of a flat-foldable origami unit cell at different important configurations. The inset is the solution of Eq. (6).
(c)–(h) Normalized collapse performance corresponding to generic single collinear creases, where the insets in (f) and (g) are achievable
ranges of combinations of L̂m, L̂c, and L̂l. β ¼ 1 in these figures, and figures with β ¼ 2 and 0.5 are in Appendix Sec. V [30].
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FIG. 4. Integrating different cells into a solid. (a) Two different
sheets that meet specific geometric constraints can be stacked
seamlessly together and form a foldable solid with three types of
cells (b). (c) A 3D printed tricell prototype for concept testing, in
this design: γA1 ¼ γB1 ¼ 70°, β ¼ 1, and aB ¼ 1.35aA. (d) Nor-
malized collapse performance of the prototype design. The solid
points are the corresponding averaged experimental results.
(e) Normalized collapse performances from a generic single
collinear design: γA1 ¼ 45°, γB1 ¼ 70°, β ¼ 1, and aB ¼ 1.25aA.
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different types of cells at a desired level, one can control the
collapse performance on demand.
In a broader scope, the analytical and experimental

investigation of the programmable collapse from origami
folding laid down the foundation for applying the pressur-
ized origami solid for recoverable energy absorbers. Since
the physical principles related to the underlying pressure-
induced stiffness is primarily geometrical, the program-
mable collapse can be achieved with vastly different crease
design length scales. The negative stiffness may also
enhance the performance of the aforementioned applica-
tions of rigid origami folding such as rapid morphing and
actuation [31], as well as enabling other high-performance
dynamic applications that have not been attempted on
origami systems, such as vibration isolation and damping at
an extremely low frequency [32,33]. Finally, collapse and
negative stiffness belong to the topic of nonlinear mechan-
ics that is related to a large amplitude deformation (fold-
ing); the results of this Letter suggest potential richness in
this topic, which can be developed into another branch of
origami study.
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