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We revisit two-dimensional holography with the Sachdev-Ye-Kitaev models in mind. Our main result is
to rewrite a generic theory of gravity near a two-dimensional anti-de Sitter spacetime throat as a novel
hydrodynamics coupled to the correlation functions of a conformal quantum mechanics. This gives a
prescription for the computation of n-point functions in the dual quantum mechanics. We thereby find that
the dual is maximally chaotic.
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Introduction.—The Sachdev-Ye-Kitaev (SYK) models
[1,2] are quantum mechanical systems with random all-to-
all interactions. It has recently been conjectured that they
have a gravity dual in two dimensions.
The basic SYK model is a theory of 2N Majorana

fermions ψa (a ¼ 1;…; 2N) perturbed by quenched dis-
order. The Hamiltonian is

H ¼
X
a;b;c;d

Jabcd
4!

ψaψbψcψd; ð1Þ

where Jabcd ¼ 0 and JabcdJabcd ¼ 3!J2=ð2NÞ3. At a tem-
perature T, there is a single dimensionless coupling J=T.
The high-temperature theory has 2N weakly interacting
fermions, while the low-temperature theory is strongly
correlated. Crucially, the theory is soluble at large N (see,
e.g., Refs. [3,4]).
There are two main pieces of evidence that indicate that

the SYKmodels have a gravity dual. The first is an emergent
conformal symmetry at low energies, togetherwith a largeN
extremal entropy. The second is much more nontrivial. The
SYK models saturate the “chaos bound” of Ref. [5] on the
Lyapunov exponent, which characterizes the rate of growth
of certain out-of-time-ordered four-point functions [6,7].
This bound, which exists in any quantum system, is 2πT.
Conformal field theories with an Einstein gravity dual also
saturate the chaos bound [7], which led Kitaev [2] to
conjecture that the SYK model gives a toy model for
quantum gravity in two dimensions (see also Refs. [8,9]).
This prospect brings us back to the AdS2=CFT1 corre-

spondence, along with all of its baggage. The AdS2=CFT1

correspondence has never been satisfactorily developed,
largely due to problems on both sides of a putative duality.
In one dimension, field theories are ordinary quantum
mechanics, so we will refer hereafter to a one-dimensional
conformal field theory (CFT1) as a conformal quantum
mechanics (CQM).
On the CQM side, one runs into a paradox due to

Polchinski [10]. Let ρðEÞ be the density of states. Scale
invariance implies that

ρðEÞ ¼ eS0δðEÞ þ eS1

E
: ð2Þ

If the second term is nonzero, then there must be an infrared
cutoff ΛIR, but if it vanishes, then a CQM is a topological
theory with no dynamics.
ThisCQMparadox is dual to the fact that two-dimensional

anti–de Sitter spacetimes (AdS2) cannot support finite-
energy excitations. Injecting a lump of energy into an
AdS2 throat leads to strong backreaction, which cannot be
consistently analyzed within the throat.
These two paradoxes are dual to each other in that they

reflect modest UV-IR mixing. On the CQM side, “irrelevant
deformations” to the density of states allow for consistent
time evolution and nontopological correlators, while, on the
gravity side, AdS2 throats do not admit a decoupling limit. A
consistent study of scattering requires the flow to the throat.
There is a connection to large N limits here, in that these

paradoxes arise at a finiteN. In the strictN → ∞ limit, there
is nothing wrong with a generalized free CQM [11], while
backreaction disappears on the gravitational side. However,
at a finiteN, there is no such thing as an interacting CQM or
AdS2 holography. A large N theory may be only approx-
imately conformally invariant, with conformal invariance
broken at Oð1=NÞ, as advocated in Ref. [12].
The point of this Letter is twofold. First, we assess the

viability of a SYK/AdS2 correspondence. Second, we
revisit AdS2 holography. For theories dual to dilaton
gravity with an AdS2 near horizon, we derive an effective
hydrodynamic action for the near-AdS2 physics from
which we see that they saturate the chaos bound.
The SYK models.—We begin with a brief review of the

SYK models. The theory of 2N Majorana fermions ψa

(a ¼ 1;…; 2N) [13] is an exact CQM:

Sψ ¼
X
a

Z
dtψa∂tψ

a: ð3Þ

It is merely a system of 2N zero-energy states and so has a
large extremal entropy S ¼ N ln 2. The two-point function
of ψ is topological,

hψaðtÞψbð0Þi ¼ δab

2
sgnðtÞ: ð4Þ

PRL 117, 111601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 SEPTEMBER 2016

0031-9007=16=117(11)=111601(6) 111601-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.111601
http://dx.doi.org/10.1103/PhysRevLett.117.111601
http://dx.doi.org/10.1103/PhysRevLett.117.111601
http://dx.doi.org/10.1103/PhysRevLett.117.111601


This theory admits N relevant deformations built from
fermion monomials. The SYK model is the theory of 2N
fermions perturbed by quenched disorder for the quartic
monomial,

SSYK¼
Z

dt

�X
a

ψa∂tψ
a−

X
a;b;c;d

Jabcd
4!

ψaψbψcψd

�
: ð5Þ

Note that if the source Jabcd were not disordered, then the
four-Fermi interaction would break the global symmetry.
However, the quenched disorder preserves the full SOð2NÞ
flavor symmetry of the free-field fixed point.
The SYK model realizes an emergent conformal sym-

metry at low energies and largeN. At T ¼ 0, the solution to
the leading large N Schwinger-Dyson equation for the two-
point function of ψa is

hψaðtÞψbð0Þi¼
�

1

4πJ2

�
1=4 sgnðtÞδab

jtj1=2 ; t≫ 1=J; ð6Þ

so that ψa has dimension 1=4 in the infrared.
There is a generalization of the SYKmodel characterized

by two integers, the number of fermions 2N, and the degree
q of the disordered interaction:

Sq ¼ Sψ −
Z

dt
X

a1;…;aq

Ja1;…;aq

q!
ψa1 ;…;ψaq : ð7Þ

This theory also hosts an emergent conformal symmetry
at low energies and large N (with q ≪ N), where ψa

behaves like a dimension-1=q operator in the IR.
The SYK model exhibits another hallmark of emergent

conformal symmetry in one dimension: it has a large N
extremal entropy. Standard large N power counting shows
that the leading contribution to the low-temperature, largeN
thermal partition function is the one-loop determinant of the
inverse, resummed fermion propagator (6). Conformally
mapping to the thermal circle, the thermal Euclidean two-
point function of ψ is

GðωnÞ ∝
ΓðΔ − nþ 1

2
Þ

Γð1 − Δ − nþ 1
2
Þ ; Δ ¼ 1

q
; ð8Þ

where ωn ¼ 2πðn − 1=2ÞT is the nth Matsubara frequency.
The extremal entropy is given by

S
N

¼
X
n

ln jG−1ðωnÞj þOðN−1Þ: ð9Þ

This sum cannot be done explicitly. Following Ref. [2],
we differentiate with respect to Δ (dropping the 1=N
corrections):

1

N
dS
dΔ

¼ πð2Δ − 1Þ tanðπΔÞ: ð10Þ

Integrating with respect to Δ and using that the entropy at
Δ ¼ 0 is N ln 2 gives

S
N

¼ ð1 − 2ΔÞ ln ½2 cosðπΔÞ�

−
Li2ð−e2πiΔÞ − Li2ð−e−2πiΔÞ

2πi
: ð11Þ

(This result was first obtained numerically in Ref. [14],
but, to our knowledge, this is the first time it has been
computed analytically.) For Δ ¼ 1=4, this gives S=N ¼
G=π þ ðln 2Þ=4 ≈ 0.464848, whereG is Catalan’s constant.
With all of this in mind, we find two simple reasons why

the SYKmodels cannot have a conventional (weakly curved,
weakly coupled) gravity dual. (These reasons were also
mentioned in Ref. [4].) 1. The entropy of the SYKmodels is
OðNÞ, so that the Newton’s constant of the putative dual
would beOð1=NÞ. The 2N fermionsψa would be dual to 2N
degenerate, bulk fermions Ψa. However, the existence of so
many light fields invalidates the saddle-point approximation:
the one-loop correction to the bulk partition function from
the Ψa would be comparable to the classical saddle. More
simply, the SYK spectrum is not sparse. 2. Theories with a
conventional gravity dual exhibit large N factorization.
Consequently, given an operator O of dimension Δ dual
to a bulk field, there are necessarily “double-trace” operators,
e.g.,∼Oð∂2ÞnO of dimension 2Δþ2nþOð1=NÞ. Computa-
tion of the four-point function of the ψa in the SYK models
[3,4] reveals no such operators.
These ills might be cured by gauging a large subgroup of

the flavor symmetry. That is, there may yet be a gauged
SYK/AdS correspondence. This would be immensely
satisfying if true. We cannot help but mention that this
would be consistent with arguments that bulk locality is
tied to “large” gauge symmetries in a field theory dual (see,
e.g., Refs. [11,15]).
Simpler still, perhaps the singlet sector of the SYK

models is dual to a two-dimensional higher-spin theory in
the spirit of Ref. [16].
Dilaton gravity.—Two-dimensional gravity is rather dif-

ferent from its higher-dimensional cousins. Compactifica-
tion to two dimensions generally leads to a dilaton gravity
characterized by a two derivative action,

Sbulk ¼
1

2κ2

Z
d2x

ffiffiffiffiffiffi
−g

p ðφRþU½φ�Þ þ Smatter; ð12Þ

where φ is the dilaton and U its potential. The equations of
motion are

Tμν ¼−DμDνφþgμν□φ−
gμν
2
U; Φ¼RþU0; ð13Þ

with Tμν andΦ being the stress tensor and the dilaton source,

δSmatter ¼
1

2κ2

Z
d2x

ffiffiffiffiffiffi
−g

p ðTμνδgμν − ΦδφÞ: ð14Þ

Dilaton gravities have AdS2 vacua at the roots of the
dilaton potential, U½φ0� ¼ 0 with matter fields vanishing,
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φ¼φ0; g¼L2ð−r2dt2þ2dtdrÞ; L2¼ 2

U0½φ0�
: ð15Þ

We take U0½φ0� ¼ 2 hereafter. Observe that we are using
infallingEddington-Finkelstein coordinates.Holographically
renormalizing in the AdS2 throat [17] shows that (i) the
dilaton is not dual to an operator, (ii) themetric is not either, in
that the dual stress tensor vanishes, and (iii) the dual theory is
invariant under a Virasoro symmetry with c ¼ 0 [18]. The
boundary theory lives at r → ∞ with the metric h ¼ −dt2.
The vanishing of the boundary stress tensor is another

way of stating the usual result that AdS2 does not support
finite-energy excitations [19].
Conformal symmetry is infinite dimensional in one

dimension. Any reparametrization of time t ¼ tðwÞ can
be compensated for by a Weyl rescaling of the metric
hμν → e2Ωhμν so as to leave the metric invariant. On the
gravity side, conformal transformations correspond to
diffeomorphisms which preserve the radial gauge in
Eq. (15) and fix the boundary metric. Under the conformal
transformation tðwÞ, the AdS2 vacuum (15) becomes

φ ¼ φ0; g ¼ −½r2 þ 2ftðwÞ; wg�dw2 þ 2dwdr; ð16Þ
with ftðwÞ; wg being the Schwarzian derivative

ftðwÞ; wg ¼ t000ðwÞ
t0ðwÞ −

3

2

½t00ðwÞ�2
½t0ðwÞ�2 : ð17Þ

The conformal transformation tðwÞ ¼ tanhðπwTÞ has
constant Schwarzian ftðwÞ; wg ¼ −2π2T2 and maps the
AdS2 vacuum to an AdS2 black hole

φ ¼ φ0; g ¼ −ðr2 − r2hÞdw2 þ 2dwdr; ð18Þ
with rh ¼ 2πT and T being the Hawking temperature. The
thermal entropy is S ¼ 2πφðrhÞ=κ2 ¼ 2πφ0=κ2.
Now consider a holographic renormalization group (RG)

flow terminating in an AdS2 throat. To get the basic idea, we
turn off the matter fields Tμν ¼ 0, Φ ¼ 0 and try to glue the
AdS2 near horizon (16) to aRG flow at large r. Enforcing the
rr component of Einstein’s equations (13), the near-AdS2
geometry is given by the perturbative solution

φ ¼ φ0 þ l½rφ1ðwÞ þ φ2ðwÞ� þOðl2r2Þ;
g ¼ −½r2 þ 2ftðwÞ; wg�dw2 þ 2dwdrþOðlrÞ; ð19Þ

where l is a length scale satisfying lr ≪ 1. The dilaton
formally behaves as if it is dual to a dimension-2 operator,
with a source lφ1ðwÞ. We work in the same spirit as
Refs. [20,21] and take the dual QM to “live” on a
constant-r slice at large r → ∞, and we fix φ1 ¼ 1 as a
boundary condition. The rw component of Einstein’s
equations fixes φ2 ¼ 0, and the ww component gives

∂wðftðwÞ; wgÞ ¼ 0: ð20Þ
So, in the absence of matter, the RG flow must terminate

in an AdS2 black hole (18). The flow corrects the near-
extremal entropy,

S ¼ 2π

κ2
½φ0 þ 2πlT þOðl2T2Þ�: ð21Þ

We now send in matter. For simplicity, consider a small
amount of infalling null dust described by a stress tensor
TwwðwÞ ∼ l. The rr component of Einstein’s equations is
unmodified, so the perturbative solution (19) still holds. We
again impose φ1 ¼ 1, and the rw component fixes φ2 ¼ 0.
The ww component gives (to first order in l)

l∂w½ftðwÞ; wg� ¼ −TwwðwÞ: ð22Þ
This relation is familiar: the horizon grows as matter falls
in. Let us translate it into an equation in the boundary
quantum mechanics. Holographically renormalizing to first
order in l, we find that the boundary energy E ¼ −hμνhtμνi
(with tμν being the boundary stress tensor) is

E ¼ −
l
κ2

ftðwÞ; wg: ð23Þ
A microscopic model for the dust is a massless scalar field,

Smatter ¼ −
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p
Z0½φ�ð∂χÞ2; ð24Þ

dual to a dimension-1 operatorO (we normalizeZ½φ0� ¼ 1).
The infalling solutions are χ ¼ λðwÞ on which Tww ¼ κ2 _λ2

(with _f ¼ ∂wf). The source forO is λðwÞ, and its one-point
function is hOi ¼ _λ. Putting the pieces together, Eq. (22)
becomes

_E ¼ _λhOi; ð25Þ
which is the diffeomorphism Ward identity.
We consider a general matter action in the Supplemental

Material [22]. For a single bulk field χ dual to a dimension
Δ operator OΔ with source λ, the Einstein’s equations boil
down to Eq. (25) with the energy given by

E ¼ −
l
κ2

ftðwÞ; wg þ ð1 − ΔÞλhOΔi; ð26Þ

and the extension to multiple fields is obvious.
We can do better and obtain the effective action for

dilaton gravity near the throat. It is

Seff ¼ −
l
κ2

Z
dwftðwÞ; wg þWCQM½λ; tðwÞ�; ð27Þ

where WCQM is the “generating functional” obtained by
integrating out the matter in the fixed AdS2 background
(16). Equivalently, WCQM comes from integrating out
matter in the pure AdS2 geometry (15), followed by a
conformal transformation tðwÞ. Here, tðwÞ is the funda-
mental field and its Euler-Lagrange equation is Eq. (25).
Hydrodynamics.—This result evokes the fluid-gravity

correspondence [28] in that we have rewritten the gravi-
tational dynamics as the (non)conservation of energy in the
boundary quantum mechanics with a “constitutive relation”
(26) for the energy. Unlike the fluid-gravity correspon-
dence, this rewriting does not rely on a gradient expansion
or even a black hole to start with.
Let us take this connection to hydrodynamics seriously.
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Haehl, Loganayagam, and Rangamani (HLR) have clas-
sified [29] the most general hydrodynamics consistent with
the second law of thermodynamics, building upon earlier
results in hydrostatic equilibrium [30,31]. HLR also
obtained Schwinger-Keldysh effective actions [32] for
hydrodynamics (see also Ref. [33]). A subset of allowed
transport (which they dub class L, for Lagrangian) admits an
ordinary action via a sigma model, where the fundamental
fields are maps from a “reference manifold” to the physical
spacetime [29].
The effective action (27) for dilaton gravity is just such a

class L action. Recall that tðwÞ is the conformal trans-
formation from the AdS2 vacuum to the state of the system.
It is useful to redefine tðwÞ ¼ tanh½πσðwÞ=β� so that σðwÞ is
the fundamental field, which represents a conformal trans-
formation starting from the thermal state with temperature
1=β. In terms of σðwÞ and after an integration by parts, the
effective action (27) becomes

Seff ¼
l
2κ2

Z
dw

�
σ00ðwÞ2
σ0ðwÞ2 þ 4π2

β2
σ0ðwÞ2

�
þWCQM: ð28Þ

We take w to be the coordinate on the physical spacetime
M, and σ parametrizes the reference manifold M. The
metric on M is h ¼ −w0ðσÞ2dσ2, and on M we define the
fixed vector field βσ ¼ β. From this data we define a time-
dependent temperature and velocity

T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−habβaβb

p ; ua ¼ βaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hbcβbβc

p ; ð29Þ

and _f ¼ ua∂af. Then,

Seff ¼
Z

dσ
ffiffiffiffiffiffi
−h

p �
PðTÞ þ l

2κ2
_T2

T2

�
þWCQM; ð30Þ

where PðTÞ is the pressure

PðTÞ ¼ −E0 þ
2π

κ2
ðφ0Tþ πlT2Þ; ð31Þ

andE0 is the ground state energy. [Strictly speaking, neither
the ground state energy nor the linear term was present in
Eq. (27), but neither affects the equation of motion, so we
lose nothing by adding them.] Reparametrization invariance
guarantees that the equation of motion for wðσÞ, keeping h
and βa fixed, is precisely Eq. (25).
A few comments are in order. (1) The hydrodynamic

action also computes the low-temperature free energy.
Wick rotating to Euclidean signature, the action evaluated
on the solution wðσÞ ¼ σ (so that T ¼ T) gives

lnZE ¼ iSE ¼ −βE0 þ
2π

κ2
½φ0 þ πlT þOðl2T2Þ�:

(2) The _T2 and T2 terms in the hydrodynamic action are
linked: they arise from the Schwarzian action (27) after
conformally transforming from the vacuum. In this way, the
low-temperature correction to the entropy (equivalently a
low-energy correction to the density of states) determines
the dynamics. In principle, there are higher derivative

corrections to the OðlÞ hydrodynamic action (30), e.g.,
ðl=κ2ÞðT̈2=T4Þ. However, as far as we can tell, all such
terms are forbidden by demanding regularity in the vacuum
[as long as σ0ðwÞ > 0]. In this sense, the OðlÞ hydro-
dynamic action seems to be unique. (3) AtOðl2Þ, however,
we expect there to be additional terms in Seff , likel2T3. (4) It
would be interesting to go beyond the classical limit and
compute quantum corrections to the free energy, correlators,
etc., arising from the hydrodynamic mode wðσÞ.
Chaos.—A basic entry in the holographic dictionary is

the computation of CFT correlation functions via Witten
diagrams in AdS. In the tree-level approximation to dilaton
gravity near AdS2, the computation of two- and three-point
functions of boundary operators is straightforward, and the
result is the usual one dictated by conformal invariance.
The four-point function is much richer. It has two parts. The
first is a conformally invariant contribution involving a sum
over conformal blocks, dual to tree-level contact and
exchange Witten diagrams. The second breaks conformal
invariance, dominates the first, and is due to the hydro-
dynamics (30). What happens is this. Quadratic fluctua-
tions of the source λ for the operator O inject energy: they
source the “Goldstone mode” wðσÞ. Plugging the fluc-
tuation δwðσÞ ∼ λ2 back into the matter action WCQM leads
to an Oðλ4Þ contribution to the on-shell action.
We stress that this “hydrodynamic backreaction” and the

concomitant conformal symmetry breaking was anticipated
by Almheiri and Polchinski [12], who studied a soluble toy
model of two-dimensional holography.
We illustrate the importance of this hydrodynamic con-

tribution by computing the Lyapunov exponent. Consider an
out-of-time-ordered thermal four-point function [6,7] of two
operators, W and V,

FðwÞ≡ hWðwÞVð0ÞWðwÞVð0Þiβ: ð32Þ

The Lyapunov exponent λL characterizes the growth of
FðwÞ ∼ eλLw. We obtain FðwÞ from the Euclidean vacuum
four-point function by the same method as in Refs. [3,34].
We begin on the Euclidean line τ̄ and turn on a source λ

for OΔ, normalized as hOΔðτÞOΔð0Þi ¼ 1=jτ̄j2Δ. The con-
formally transformed WCQM is

WCQM ¼ 1

2

Z
dτ1dτ2½τ̄0ðτ1Þτ̄0ðτ2Þ�Δ
jτ̄ðτ1Þ − τ̄ðτ2Þj2Δ

λðτ1Þλðτ2Þ þOðλ3Þ:

ð33Þ

With τ̄ðτÞ ¼ τ þ εðτÞ, the equation of motion (25) gives

εðτÞ ¼ κ2Δ
12l

Z
dτ1dτ2

jτ1 − τ2j2Δ
jτ − τ1j3

×

�
3

τ − τ1
þ 2

τ1 − τ2

�
λðτ1Þλðτ2Þ þOðλ3Þ: ð34Þ
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Feeding this back into Seff leads to an Oðλ4Þ term:

δεSeff ¼
Z

dτ

�
l
2κ2

̈ε2 − Δ_ελhOΔi − ελh _OΔi
�
: ð35Þ

This gives the connected, Euclidean, hydrodynamic four-
point function for two different operators, W and V:

hWðτ1ÞWðτ2ÞVðτ3ÞVðτ4Þi
hWðτ1ÞWðτ2ÞihVðτ3ÞVðτ4Þi

¼ κ2

l
ΔWΔV

�
jτ13j3

�
2

3τ12τ34
þ 1

τ12τ13
þ 1

τ13τ34

�

− jτ13j þ ðpermutationsÞ
�
; ð36Þ

with τij ¼ τi − τj. For 1=κ2 ∼ N, this contribution is
1=ðNlÞ, which is Oð1=NÞ and breaks conformal invari-
ance, as advertised. It well approximates the full four-point
function at late times (but with jτijj=l ≪ N). We con-
formally map to the thermal state τ ¼ tanhðπw=βÞ and take
the “second sheet” analytic continuation

w1¼wþ2iϵ; w2¼w− iϵ; w3¼ iϵ; w4¼−2iϵ:

ð37Þ
The terms in brackets cancel against their permutations so
that the four-point function grows as τ1 ∼ tanhðπwTÞ∼
expð2πwTÞ. We thereby extract

λL ¼ 2πT: ð38Þ
Conclusions.—We have found two main results. First,

the SYK models do not have a conventional gravity dual,
although perhaps there is a gauged SYK/AdS correspon-
dence. Second, with the prospect of such a correspondence
in mind, we unraveled various thorny issues in AdS2
holography. Our central result was to rewrite the gravita-
tional dynamics near an AdS2 throat in terms of an effective
quantum mechanical action (27). This action was that of a
novel hydrodynamics (30) coupled to CQM correlators.
Unlike ordinary hydrodynamics, it describes the dynamics
all the way down to extremality.
This hydrodynamics is intimately tied up with diffeo-

morphism invariance, ensuring that the diffeomorphism
Ward identity is satisfied in the infrared. The hydrodynamic
description plays a similar role in two-dimensional holog-
raphy as the Virasoro identity block with c ≫ 1 does in
AdS3: both approximate the leading contribution to four-
point functions in their respective field theory duals.
Maldacena and Stanford [4] have recently obtained the

same Schwarzian effective action (27) from the large N
solution of the SYK models. The emergence of the same
description in two rather different systems raises the ques-
tion of its universality.
In themain text, we suggested that the leading low-energy

part of the hydrodynamic actionwas unique, in the sense that

the coefficients of the _T2 and T2 terms were linked as in
Eq. (30) and that there are no gradient corrections.
If this is the case, then it seems reasonable that the

hydrodynamic description universally describes (diffeo-
morphism-invariant) large N systems with an emergent
conformal invariance, and consequently any such system
will be maximally chaotic [22].

This work grew out of a collaboration with C. P. Herzog,
to whom I owe many thanks. It is also a pleasure to thank
A. O’Bannon, L. Rastelli, M. Rozali, S. Sachdev, and
S. Shenker for enlightening discussions.

Note added.—Recently, Maldacena and Stanford posted a
very interesting paper [4] which displays some overlap with
this Letter.
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