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We consider a six-partite, continuous-variable quantum state that we have effectively generated by the
parametric down-conversion of a femtosecond frequency comb. We show that, though this state is two-
separable, i.e., it does not exhibit “genuine entanglement,” it is undoubtedly multipartite entangled.
The consideration of not only the entanglement of individual mode decompositions, but also of
combinations of those, solves the puzzle and exemplifies the importance of studying different categories
of multipartite entanglement.
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Introduction.—Entanglement is, nowadays, a major
subject of research in quantum physics, long after the
pioneering contributions of Einstein, Podolsky, Rosen [1],
and Schrödinger [2]. It is the main quantum resource in a
vast number of applications in quantum information [3].
Entanglement witnesses uncover such quantum correla-
tions [4,5] in either discrete variables, using measurements
with photon counters, or in continuous variables by
employing homodyne detection, for characterizing the
quantum states of light.
Pure entangled states have been first considered in

bipartite systems. The case of mixed correlated states turns
out to be more involved. An intermediate situation between
factorized and entangled states has been introduced, the
separable states, which are statistical mixtures of factorized
pure states [6]. A number of entanglement probes for
continuous-variable systems have been studied [4,5], par-
tial transpose being one of the most popular inseparability
tests. These criteria are in most cases only sufficient to
detect the different levels of correlation. The problem
simplifies for bipartite Gaussian states, for which the partial
transposition of the covariance matrix is a necessary and
sufficient entanglement identifier [7–9].
The complexity of the separability problem increases

substantially when one studies multipartite systems. In
these situations, one has a rapidly increasing number of
choices in the bunching of parties on which one searches
for a possible factorization. Hence, the inseparability
between the individual degrees of freedom exhibits a much
richer and complex structure which begins to be studied
[10–12]. For example, the difference between bipartite and
multipartite systems is highlighted by the existence of
multimode Gaussian states whose entanglement cannot be
uncovered by the partial transposition [13,14].
As a special case, combinations of bipartitions of the

total system are a subject of many studies. A state which is

not a statistical mixture of bipartite factorized density
matrices (i.e., not two-separable) is also called “genuinely”
multipartite entangled [15]. The detection of genuine
entanglement is at the focus of attention [16–24]. This
interest can be explained by the fact that genuine entangle-
ment implies multipartite entanglement for every other
separation of the modes. However, if a state does not
exhibit this specific kind of entanglement (i.e., is two-
separable), no conclusions on other forms of multipartite
quantum correlations can be drawn. Thus, it is indispen-
sable to study what happens beyond genuine entanglement.
This is the subject of the present Letter.
In experiments, continuous-variable quantum correlated

states have been produced by mixing, in an appropriate
way, different squeezed states on beam splitters [25]. More
recently, multimode Gaussian states (either spatial or
frequency modes) have been directly generated by a
multimode optical nonlinear device [26,27]. In the multi-
frequency case, the experimental determination of the full
covariance matrix of a ten-mode “quantum frequency
comb” has allowed us to uncover the complex structure
of its quantum properties, in particular, the entanglement of
all its possible partitions. [28–30].
In this Letter, we characterize states which are two-

separable and yet exhibit a rich multipartite entanglement
structure. For achieving this, we formulate different notions
of separability and entanglement, then, we provide a
method for qualifying them in a general case. Using this
technique, we uncover the structure of multimode entan-
glement in an experimentally produced six-mode Gaussian
state, using multimode parametric down-conversion of a
femtosecond frequency-comb light source. Even though
this state is two-separable, it includes all other forms of
higher-order entanglement.
Combinations of modal partitions.—We consider multi-

mode states which are based on an N-fold Hilbert space
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H ¼ H1 ⊗ … ⊗ HN , where Hj is the local Hilbert space
of the jth mode. A particular K-partition I1∶…∶IK
decomposes the set of modes, f1;…; Ng, into K nonempty,
disjoint subsets Ik (for k ¼ 1;…; K). We will call such a
partition an individual K-partition.
The corresponding pure factorized states are product

states, jsI1∶…∶IK
i ¼ jaI1

i ⊗ … ⊗ jaIK
i, consisting of

states jaIk
i ∈ ⊗

j∈Ik

Hj. Subsequently, a mixed I1∶…∶IK-

separable state is defined as

σ̂I1∶…∶IK
¼

Z
dPðsI1∶…∶IK

ÞjsI1∶…∶IK
ihsI1∶…∶IK

j; ð1Þ
where P is a classical probability distribution over the set of
pure (continuous-variable) separable states.
A state is called K-separable if it can be written as a

statistical mixture of separable states with respect to the
different K-partitions I1∶…∶IK ,

σ̂K ¼
X

I1∶…∶IK

pI1∶…∶IK
σ̂I1∶…∶IK

; ð2Þ

where pI1∶…∶IK
are probabilities and σ̂I1∶…∶IK

are the
corresponding I1∶…∶IK-separable states in Eq. (1). We
will refer to this combination of individual K-partitions
as a convex combination of K-partitions. A state is called
K-entangled if it cannot be written in the manner specified
in Eq. (2). In particular, a state which is not “biseparable”
(K ¼ 2) is precisely the genuinely multipartite entangled
state studied in the literature.
Figure 1 shows the different kinds of separability in the

tripartite scenario, N ¼ 3, in a schematic Venn diagram.
Needless to say, it is impossible to illustrate the full
structure of the partitions in infinite dimensional Hilbert
spaces. The circles represent pure states that are factoriz-
able with respect to a defined partitioning. These states
have to be extremal points of the convex sets, since they are
not combinations of any other states. The highlighted areas
in between these points represent the considered convex
hull of mixed separable states. States lying outside of these
sets are entangled in that particular notion for arbitrary,
compound Hilbert spaces.
For instance for K ¼ 3, we have the statistical mixture of

pure, fully separable states jsf1g∶f2g∶f3gi (red area; left
pattern in top row of Fig. 1). In order to get an area, we
selected three pure state representatives (D, E, and F) from
the equivalence class of all three-separable pure states. Any
state that is outside this convex (red) area symbolizes a
three-entangled state.
The K ¼ 2-separable states (green area; center pattern in

top row of Fig. 1) lie in the convex hull of three individual
bipartitions, which are depicted in the middle row of Fig. 1.
We select the point H to be one pure state representative
jsf1;2g∶f3gi, which is not of the form jsf1g∶f2g∶f3gi,
jsf1g∶f2;3gi, or jsf1;3g∶f2gi. Similarly, the states represented
by point B or points C andG are exclusively separable with

respect to the individual partition f1g∶f2; 3g or
f1; 3g∶f2g, respectively, forming nonidentical sets of
mixed separable states of the individual partitions (middle
row). For symmetry reasons, we consider two points (G and
C) for the partition f1; 3g∶f2g. All of them are two-
separable in the convex combination of all bipartitions (top
row, center pattern).
For K ¼ 1, we get all states (blue area, right pattern in

top row of Fig. 1). The point A serves as an element of the
equivalence class of all pure, two-entangled states. Those
are nonfactorizable. As every mixed state is trivially in the
full partition f1; 2; 3g, this (blue) set includes all quantum
states.
In the bottom row of Fig. 1, we also show the three

individual bipartitions f1; 2g∶f3g, f1; 3g∶f2g, and
f1g∶f2; 3g (dashed borders) included into the convex
combination of biseparable states (solid border). Our target
state (indicated by a star) is entangled with respect to all
individual bipartitions, but it is separable with respect to the
convex combination of bipartitions. These states are par-
ticularly interesting as they are not genuinely multipartite
entangled (two-separable). We will show explicitly for a
six-partite system, N ¼ 6, that such states still exhibit rich
multipartite entanglement properties.
Entanglement criteria for convex combinations.—A

criterion for detecting entanglement of states is based on
the entanglement witnesses [31]. It can be formulated as
follows: A state is entangled if a Hermitian operator L̂

FIG. 1. Partitioning of a tripartite system. The circles indicate
pure state representatives for different notions of separability or
entanglement (distinguished by the lightness [color]). The top row
depicts the convex sets ofK-partitions. TheK ¼ 2 case is a convex
combination of the individual bipartitions I1∶I2, which are given
in the pattern in the middle row. The bottom shows the overlay of
the individual bipartitions (dashed bordered sets) as an inset into the
convex set of all bipartitions (solid borders). The target state (filled
star) is a convex combination of two-partite separable states. It is,
therefore, two-separable, but three-entangled.
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exists, whose expectation value is smaller than the minimal
attainable value for all separable states σ̂ [32],

hL̂i < inf
σ̂
ftrðL̂ σ̂Þg: ð3Þ

This criterion is general and covers any kind of insepa-
rability. It applies, therefore, to either individual partitions
or convex combinations.
Let us show that the bound in (3) can be achieved by pure

state representatives. For this reason, we apply the follow-
ing property of convex (statistical) mixtures:

inf

�Z
dPðxÞxj

Z
dP ¼ 1 and P ≥ 0

�
¼ inf

x
fxg: ð4Þ

This allows us to derive the lower bound in (3) for
K-separable states,

inf
σ̂K
ftrðL̂σ̂KÞg ¼ð2Þ;ð4Þ

min
I1∶…∶IK

inf
σ̂I1∶…∶IK

ftrðL̂σ̂I1∶…∶IK
Þg

¼ð1Þ;ð4Þ
min

I1∶…∶IK

inf jsI1∶…∶IK i

× fhsI1∶…∶IK
jL̂jsI1∶…∶IK

ig:
Equation labels over the equal signs indicate that those
equations have been used for rewriting. Thus, the minimal
expectation value of L̂ for separable states in convex
combinations of K-partitions is identical to the least
expectation value (minI1∶…∶IK

) achievable by pure states
of the individual partitions I1∶…∶IK (inf jsI1∶…∶IK i).

The minimization of hsI1∶…∶IK
jL̂jsI1∶…∶IK

i for pure,
I1∶…∶IK-separable states has been treated in Ref. [32].
There, so-called “separability eigenvalue equations” have
been derived. The solution of those equations for a given
observable L̂ yields the minimal separability eigenvalue
gmin
I1∶…∶IK

, which is also the desired infimum for separable
states of the individual K-partition I1∶…∶IK. We can
conclude: A state is inseparable with respect to the convex
combination of all K-partitions (K-entangled), if and only
if there exists a Hermitian operator L̂, such that

hL̂i < gmin
K ¼ min

I1∶…∶IK

fgmin
I1∶…∶IK

g: ð5Þ
Although this condition clearly differs from the approach
for individual partitions [30], it is remarkable that we can
use a similar calculus. The method of separability eigen-
values was introduced to uncover entanglement of indi-
vidual K-partitions I1∶…∶IK, via hL̂i < gmin

I1∶…∶IK
[32].

Now, it serves for detecting entanglement among convex
combinations of all K-partitions [inequality (5)].
Witnessing multimode Gaussian states.—A Gaussian

state is fully described by its covariance matrix. In the
following, we will use the vector

ξ̂ ¼ ðx̂1;…; x̂N; p̂1;…; p̂NÞT; ð6Þ
including the amplitude (x̂j) and phase (p̂j) quadratures of
all possible modes (j ¼ 1;…; N). The covariance matrix C

of a Gaussian state can be written in terms of the
symmetrically ordered elements Cij ¼ hξ̂iξ̂j þ ξ̂jξ̂ii=
2 − hξ̂iihξ̂ji. As local displacements do not affect the
entanglement, it is sufficient to analyze the covariance
matrix of a Gaussian state, assuming hξ̂ji ¼ 0. Thus, the
most general form of a Gaussian test operator L̂ is the
quadratic combination

L̂ ¼
X2N
i;j¼1

Mijξ̂iξ̂j; ð7Þ

with a symmetric, positive definite 2N × 2N matrix
M ¼ ðMijÞ2Ni;j¼1. Note that Williamson’s theorem allows
us to diagonalize such a matrix M into a form
diagðλ1;…; λN; λ1;…; λNÞ in terms of symplectic opera-
tions, see, e.g., [33].
The minimal separability eigenvalue of L̂ in Eq. (7) for

an individual partition I1∶…∶IK is given by [30]

gmin
I1∶…∶IK

¼
XK
j¼1

XjI jj

k¼1

λ
I j

k ; ð8Þ

where jI jj is the cardinality of I j, and λ
I j

k are the diagonal
values of the Williamson decomposition of the submatrix
which solely consists of the rows and columns ofM that are
in the index set I j (see, also, the Supplemental Material of
Ref. [30]). Finally, the entanglement condition (5) is given
by the bound

gmin
K ¼ min

I1∶…∶IK

fgmin
I1∶…∶IK

in Eq:ð8Þg: ð9Þ

Hence, we have formulated an infinite number
(for any positive, symmetric matrix M) of multipartite
K-entanglement probes in an analytical form. This inclu-
des, as a subclass, Gaussian tests for two-entanglement,
gmin
K¼2 > hL̂i, which have been recently studied [24]. The
analytical minima gmin

K in Eq. (9) are needed in order to
correctly apply our entanglement condition (5).
Let us relate our method with other covariance based

entanglement probes. For example, in [34,35], entangle-
ment tests are constructed based on the partial trans-
position. As each mode can be either transposed or not,
those criteria are only sensitive to individual bipartitions
and, in a convex combination, two-entanglement. As our
operator L̂ [Eq. (7)] is defined in the most general second-
order-moment form, it is well suited for uncovering
entanglement in Gaussian states of any partitioning.
Even if a test for two-entanglement fails, we can still
probe for K ≥ 3-entanglement. Other methods for inferring
multipartite entanglement were introduced, e.g., in [36],
based on semi-definite problems. Those approaches are
limited to certain states, e.g., Gaussian ones, or they are
computationally demanding. Extending the operator in
Eq. (7) beyond quadratic terms and solving its separability
eigenvalue equations generalizes our method, so it can be
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used to verify entanglement, also, in non-Gaussian states by
inequality (3).
In order to get the best entanglement signature of all test

operators L̂ in terms of matrices M [Eq. (7)], we take the
analytical solutions in Eqs. (8) and (9) and numerically
minimize the signed significances

ΣI1∶…∶IK
¼ hL̂i − gmin

I1∶…∶IK

ΔhL̂i and ΣK ¼ hL̂i − gmin
K

ΔhL̂i ;

ð10Þ
whereΔhL̂i denotes the experimental error of hL̂i, by finding
the optimal matrix M for each of those significances. The
signed significance is negative, Σχ < 0, if the state is
entangled with respect to the given notion of separability,
χ ¼ K or χ ¼ I1∶…∶IK, which is certified with a signifi-
cance of jΣχ j standard deviations. The numerical minimiza-
tion was performed with a genetic algorithm [30] which can,
in principle, not only find local minima, but also global ones
[37]. Hence, one could claim that a positive value Σχ

corresponds to a χ-separable covariance matrix. However,
we will more carefully state, in such a case, that no χ-
entanglement can be detected. As the resulting minima Σ
from the genetic algorithmare upper bounds forΣχ,Σχ < 0 is
a reliable bound to the full entanglement, and it cannot
overestimate the entanglement in our system.
Characterization of the SPOPO multimode quantum

state.—The highly multimode light state that we consider
in the following is a femtosecond frequency comb of zero
mean value spanning over roughly ∼105 individual equally
spaced frequency components, generated by parametric
down-conversion of a pump frequency comb in a synchro-
nously pumped optical parametric oscillator (SPOPO).
Details on its experimental generation and characterization
can be found in Refs. [28,29] and [38]. The 12 × 12
covariance matrix C, containing the quadrature noise var-
iances in six different frequency bands covering the whole
spectrum of the SPOPO state, as well as the correlations
between them, has been experimentally determined. The
SPOPO state, being generated by an intense pump laser in a
weakly nonlinear medium, is Gaussian to a very good
approximation. Thus, the covariance matrix contains the
whole information about the generated quantum state, at
least within the frequency resolution given by the width
of the frequency bands used in the measurements.
The generated state is clearly mixed, as its purity,
trρ̂2 ¼ ðdetCÞ−1=2 ¼ 86.4%, is below one.
Entanglement structure of a six-mode SPOPO state.—

For anN ¼ 6-mode state, 203 possible individual partitions
exist. That is one trivial partition I1 ¼ f1;…; 6g, 31
bipartitions I1∶I2, 90 tripartitions, 65 four-partitions, 15
five-partitions, and one six-partition f1g∶…∶f6g. Hence,
we have six convex combinations of K-partitions.
The results of our analysis are shown in Fig. 2 in terms of

the minimized signed significances in Eq. (10). The trivial
partition K ¼ 1 yields ΣK¼1 > 0, which means that the
measured covariance is a physical one. The value ΣK¼2 > 0

shows that no detectable two-entanglement exists in
the SPOPO quantum frequency comb. Yet, for all
K ≥ 3, K-entanglement is verified with a significance of
at least seven standard deviations, ΣK>2 < −7. Such types
of multipartite entanglement are not accessible with entan-
glement probes that are only sensitive to two-entanglement.
Considering the circles in the insets for 1 ≤ K ≤ 5 in

Fig. 2, it can be seen that the same six-mode state is entangled
with respect to all nontrivial, individual partitions—even for
K ¼ 2. Therefore, the SPOPO state is entangled with respect
to any individual bipartition, even though it cannot be
identified as a two-entangled state: The subtle structures
of multipartite entanglement are invisible for genuine entan-
glement probes.
Here, we clearly see that entanglement of some or even all

individual partitions I1∶…∶IK of the length K does not
necessarily imply K-entanglement. Rather, it is the convex
combination of the individual partitions that is responsible
for the separability or inseparability. The inverse, however, is
true: K-entanglement implies entanglement with respect to
all individual K-partitions. This follows from the condition
(5) by taking a proper test operator L̂ for the convex
combination and the same L̂ for every individualK-partition,
as gmin

K ≤ gmin
I1∶…∶IK

. Finally, let us stress that this approach
can be extended to study other convex combinations of some
individual partitionswhich are not limited by a fixedK value.
Summary and conclusion.—We have studied different

forms of K-party entanglement in multimode states. An
analytical approach to construct the corresponding entan-
glement tests was derived and further elaborated for
covariance based entanglement probes. To optimize over
the resulting infinite set of all analytical Gaussian
witnesses, a numerical optimization was performed.
This approach allows us to classify entanglement in
Gaussian states with an arbitrary number of modes.
We applied this approach to a parametrically generated

multimode frequency comb. It was shown, for a six-mode

FIG. 2. Signed significance ΣK (bars), for 1 ≤ K ≤ 6, calculated
from the data of the SPOPO state. The insets for 2 ≤ K ≤ 5 give the
values for the individual partitions, ΣI1∶…∶IK

(circles), sorted in
increasing order. For better visibility, the positive part of the
ordinate has a different scaling than the negative (entangled) part.
Despite no signature of two-entanglement, Σ2 > 0, the state shows
highly significant other forms of multipartite entanglement.
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example, that our system shows an interesting form of
entanglement. That is, the SPOPO state turns out to be a
biseparable state which is K-entangled for any K ¼ 3;…; 6.
Moreover, we detected entanglement with respect to all
individual partitions, even all the individual bipartitions.
Thus, the absence of so-called genuine entanglement does
not give any insight into the entanglement structure.
This work proves of great interest for investigating

entanglement beyond two-entanglement in highly multipar-
tite systems. A lot of questions remain to be investigated
concerning other possible types of multipartite entanglement
and, in particular, their relation to quantum computation and
communication protocols between multiple parties. Our
construction of general entanglement criteria, likely to access
multipartite quantum correlations beyond bipartitions, pro-
vides a good starting tool for tackling such problems.
As a comment to the Einstein-Podolsky-Rosen paradox

[1], Schrödinger emphasized that a compound quantum
system includes more information than provided by the
individual subsystems [2]. Considering our scenario at
hand, we may extend such a statement. Namely, multipar-
tite entanglement is much richer than the entanglement one
can infer from bipartitions only.
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